Thermofluidic transport of Williamson flow in stratified medium with radiative energy and heat source aspects by machine learning paradigm

Q1 Chemical Engineering International Journal of Thermofluids Pub Date : 2024-08-22 DOI:10.1016/j.ijft.2024.100818
S. Bilal , Asadullah , Muhammad Bilal Riaz
{"title":"Thermofluidic transport of Williamson flow in stratified medium with radiative energy and heat source aspects by machine learning paradigm","authors":"S. Bilal ,&nbsp;Asadullah ,&nbsp;Muhammad Bilal Riaz","doi":"10.1016/j.ijft.2024.100818","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates Williamson fluid with stratification aspects through an inclined medium with radiative effects and with consideration of transversally applied magnetic field. Additionally, the study involves novel contribution of thermal generating source and chemically reactive species. Modelling is conceded by incorporating conservation laws in view of ordinary differential setup after employing similar variables. Afterwards, numerical simulations through shooting and Rk-4 procedures are executed to inspect the behavior of flow and thermosolutal distributions versus variation in key parameters. Subsequently, the collected data is evaluated by utilizing a multilayer perceptron-based ANN model. The input data for the heat flux, corresponding to different fluid model parameters, is trained by employing Levenberg-Marquardt paradigm and validated against numerical experiment results. The precision of the predicted data is assessed by calculating the mean squared error, determination coefficient and error rating scale. The magnitude of heat flux coefficient elevates up to 15 % in the existence of radiation effect, while depreciates up to 6 % in the presence of stratification effect. The implementation of ANN model depicts a mean square error value 1.36×10<sup>−3</sup> when no heat source, which rises to 1.41×10<sup>−2</sup> when a heat source is present. From small values of mean squared error for testing, training and validation estimated for Nusselt number ensures the performance of developed ANN network.</p></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100818"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666202724002593/pdfft?md5=1d4d48b8ca34de61deb5bc9c410e2aa6&pid=1-s2.0-S2666202724002593-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724002593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates Williamson fluid with stratification aspects through an inclined medium with radiative effects and with consideration of transversally applied magnetic field. Additionally, the study involves novel contribution of thermal generating source and chemically reactive species. Modelling is conceded by incorporating conservation laws in view of ordinary differential setup after employing similar variables. Afterwards, numerical simulations through shooting and Rk-4 procedures are executed to inspect the behavior of flow and thermosolutal distributions versus variation in key parameters. Subsequently, the collected data is evaluated by utilizing a multilayer perceptron-based ANN model. The input data for the heat flux, corresponding to different fluid model parameters, is trained by employing Levenberg-Marquardt paradigm and validated against numerical experiment results. The precision of the predicted data is assessed by calculating the mean squared error, determination coefficient and error rating scale. The magnitude of heat flux coefficient elevates up to 15 % in the existence of radiation effect, while depreciates up to 6 % in the presence of stratification effect. The implementation of ANN model depicts a mean square error value 1.36×10−3 when no heat source, which rises to 1.41×10−2 when a heat source is present. From small values of mean squared error for testing, training and validation estimated for Nusselt number ensures the performance of developed ANN network.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习范式研究威廉姆森在带有辐射能和热源的分层介质中的热流体传输问题
本研究探讨了威廉姆森流体通过具有辐射效应的倾斜介质的分层问题,并考虑了横向施加的磁场。此外,研究还涉及热生成源和化学反应物种的新贡献。在采用类似变量后,通过结合常微分设置的守恒定律进行建模。随后,通过射击和 Rk-4 程序执行数值模拟,以检查流动和热固性分布与关键参数变化的关系。随后,利用基于多层感知器的 ANN 模型对收集到的数据进行评估。采用 Levenberg-Marquardt 范式训练不同流体模型参数对应的热通量输入数据,并根据数值实验结果进行验证。通过计算均方误差、确定系数和误差分级,对预测数据的精度进行了评估。在存在辐射效应的情况下,热通量系数的幅度最多可提高 15%,而在存在分层效应的情况下,热通量系数的幅度最多可降低 6%。在没有热源的情况下,ANN 模型的均方误差值为 1.36×10-3,而在有热源的情况下,均方误差值上升到 1.41×10-2。努塞尔特数的测试、训练和验证估计均方误差值较小,确保了所开发的 ANN 网络的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
期刊最新文献
Compressibility effects in microchannel flows between two-parallel plates at low reynolds and mach numbers: Numerical analysis Renewable energy as an auxiliary to heat pumps: Performance evaluation of hybrid solar-geothermal-systems Effect of external force on the dispersion of particles and permeability of substances via carbon nanotubes in reverse electrodialysis using molecular dynamics simulation Effect of pin fins on heat transfer during condensation in minichannel heat exchanger Numerical investigation of the flow characteristics inside a supersonic vapor ejector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1