Tyler D. Dungannon , Christopher R. Anthony , Timothy S. Bowden , Christian A. Hagen
{"title":"Microclimate and thermal refuge influences on sage-grouse brood habitat selection","authors":"Tyler D. Dungannon , Christopher R. Anthony , Timothy S. Bowden , Christian A. Hagen","doi":"10.1016/j.jtherbio.2024.103957","DOIUrl":null,"url":null,"abstract":"<div><p>Wildlife space use is driven by three primary mechanisms, predator avoidance, foraging, and thermoregulation. The latter has largely been overlooked in wildlife research. Understanding how habitat use is influenced by thermoregulatory properties is a critical component to depicting species' ecology. Galliformes’ (i.e., ground nesting birds with precocial young) ecology is predisposed to thermal extremes, where newly hatched chicks are unable to thermoregulate <14 d post-hatch, and have limited capabilities until >21 d post-hatch. We examined greater sage-grouse (<em>Centrocercus urophasianus</em>) brood rearing habitats and provide the first evaluation as to how microscale thermal environments influenced habitat selection. We monitored 24 broods, collected 82,929 black bulb temperature measurements from thermal arrays (n = 256) comprised of stainless steel black bulbs (i.e., surrogate for operative temperature) to compare brood morning (i.e., foraging, n = 78), afternoon (i.e., loafing, n = 82) and associated random locations (n = 96) between early (≤21 d post-hatch) and late (>21 d post-hatch) brood-rearing. We measured vegetation at all locations to disentangle relationships between cover and thermoregulatory metrics. We found that microclimates at all foraging locations heated more rapidly than either their loafing or random locations. Alternatively, loafing locations moderated ambient temperature more effectively than foraging locations but were similar to random locations. Broods were using loafing sites that both increased their ability to avoid predators (i.e., increased shrub structure) and buffered ambient temperature better than their foraging locations. Interestingly, random afternoon locations tended to lack concealment from predators, despite these locations showing improved thermal buffering compared to foraging locations. However, early brood-rearing habitats appeared to moderate ambient temperatures more effectively than late. Our results suggested that managing vegetation for structural heterogeneity will afford a diversity of thermal refuge for greater sage-grouse broods during this critical life history stage.</p></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"124 ","pages":"Article 103957"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030645652400175X/pdfft?md5=174b82373e1221d9493e8a4d689995a9&pid=1-s2.0-S030645652400175X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030645652400175X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Wildlife space use is driven by three primary mechanisms, predator avoidance, foraging, and thermoregulation. The latter has largely been overlooked in wildlife research. Understanding how habitat use is influenced by thermoregulatory properties is a critical component to depicting species' ecology. Galliformes’ (i.e., ground nesting birds with precocial young) ecology is predisposed to thermal extremes, where newly hatched chicks are unable to thermoregulate <14 d post-hatch, and have limited capabilities until >21 d post-hatch. We examined greater sage-grouse (Centrocercus urophasianus) brood rearing habitats and provide the first evaluation as to how microscale thermal environments influenced habitat selection. We monitored 24 broods, collected 82,929 black bulb temperature measurements from thermal arrays (n = 256) comprised of stainless steel black bulbs (i.e., surrogate for operative temperature) to compare brood morning (i.e., foraging, n = 78), afternoon (i.e., loafing, n = 82) and associated random locations (n = 96) between early (≤21 d post-hatch) and late (>21 d post-hatch) brood-rearing. We measured vegetation at all locations to disentangle relationships between cover and thermoregulatory metrics. We found that microclimates at all foraging locations heated more rapidly than either their loafing or random locations. Alternatively, loafing locations moderated ambient temperature more effectively than foraging locations but were similar to random locations. Broods were using loafing sites that both increased their ability to avoid predators (i.e., increased shrub structure) and buffered ambient temperature better than their foraging locations. Interestingly, random afternoon locations tended to lack concealment from predators, despite these locations showing improved thermal buffering compared to foraging locations. However, early brood-rearing habitats appeared to moderate ambient temperatures more effectively than late. Our results suggested that managing vegetation for structural heterogeneity will afford a diversity of thermal refuge for greater sage-grouse broods during this critical life history stage.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles