A model-based kinematic guidance method for control of underactuated autonomous underwater vehicles

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Control Engineering Practice Pub Date : 2024-08-31 DOI:10.1016/j.conengprac.2024.106068
Loïck Degorre , Thor I. Fossen , Olivier Chocron , Emmanuel Delaleau
{"title":"A model-based kinematic guidance method for control of underactuated autonomous underwater vehicles","authors":"Loïck Degorre ,&nbsp;Thor I. Fossen ,&nbsp;Olivier Chocron ,&nbsp;Emmanuel Delaleau","doi":"10.1016/j.conengprac.2024.106068","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a novel guidance principle for underactuated autonomous underwater vehicles is introduced. This new method relies on the kinematic coupling between non-actuated and actuated degrees of freedom. It uses a newly introduced matrix called the <em>Handy Matrix</em> denoted <span><math><mi>H</mi></math></span>. The method allows reassigning unused degrees of freedom of the task to useful non-actuated DOF. The algorithm and design rules leading to the construction of <span><math><mi>H</mi></math></span> are also provided. Two different solutions based on matrix <span><math><mi>H</mi></math></span> are compared on a standard seabed scanning task.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"152 ","pages":"Article 106068"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002272","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a novel guidance principle for underactuated autonomous underwater vehicles is introduced. This new method relies on the kinematic coupling between non-actuated and actuated degrees of freedom. It uses a newly introduced matrix called the Handy Matrix denoted H. The method allows reassigning unused degrees of freedom of the task to useful non-actuated DOF. The algorithm and design rules leading to the construction of H are also provided. Two different solutions based on matrix H are compared on a standard seabed scanning task.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型的运动学制导方法,用于控制欠驱动自主潜水器
在这项工作中,介绍了一种用于欠驱动自主水下航行器的新型制导原理。这种新方法依赖于非驱动自由度和驱动自由度之间的运动耦合。该方法允许将任务中未使用的自由度重新分配给有用的非驱动自由度。此外,还提供了构建 H 的算法和设计规则。基于矩阵 H 的两种不同解决方案在标准海底扫描任务中进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
期刊最新文献
A switched model predictive control with parametric weights-based mode transition strategy for a novel parallel hybrid electric vehicle An adaptive-node broad learning based incremental model for time-varying nonlinear distributed thermal processes Evaluating the process operating state taking into consideration operator interventions with application to a hot rolling mill process Improved direct ripple power predictive control of single-phase rectifier based on ripple separation Improved sliding mode disturbance observer-based model-free finite-time terminal sliding mode control for IPMSM speed ripple minimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1