Biocompatible polymer-based micro/nanorobots for theranostic translational applications

IF 10.5 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Controlled Release Pub Date : 2024-08-31 DOI:10.1016/j.jconrel.2024.08.040
{"title":"Biocompatible polymer-based micro/nanorobots for theranostic translational applications","authors":"","doi":"10.1016/j.jconrel.2024.08.040","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, micro/nanorobots (MNRs) with self-propulsion have emerged as a promising smart platform for diagnostic, therapeutic and theranostic applications. Especially, polymer-based MNRs have attracted huge attention due to their inherent biocompatibility and versatility, making them actively explored for various medical applications. As the translation of MNRs from laboratory to clinical settings is imperative, the use of appropriate polymers for MNRs is a key strategy, which can prompt the advancement of MNRs to the next phase. In this review, we describe the multifunctional versatile polymers in MNRs, and their biodegradability, motion control, cargo loading and release, adhesion, and other characteristics. After that, we review the theranostic applications of polymer-based MNRs to bioimaging, biosensing, drug delivery, and tissue engineering. Furthermore, we address the challenges that must be overcome to facilitate the translational development of polymeric MNRs with future perspectives. This review would provide valuable insights into the state-of-the-art technologies associated with polymeric MNRs and contribute to their progression for further clinical development.</p></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016836592400590X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, micro/nanorobots (MNRs) with self-propulsion have emerged as a promising smart platform for diagnostic, therapeutic and theranostic applications. Especially, polymer-based MNRs have attracted huge attention due to their inherent biocompatibility and versatility, making them actively explored for various medical applications. As the translation of MNRs from laboratory to clinical settings is imperative, the use of appropriate polymers for MNRs is a key strategy, which can prompt the advancement of MNRs to the next phase. In this review, we describe the multifunctional versatile polymers in MNRs, and their biodegradability, motion control, cargo loading and release, adhesion, and other characteristics. After that, we review the theranostic applications of polymer-based MNRs to bioimaging, biosensing, drug delivery, and tissue engineering. Furthermore, we address the challenges that must be overcome to facilitate the translational development of polymeric MNRs with future perspectives. This review would provide valuable insights into the state-of-the-art technologies associated with polymeric MNRs and contribute to their progression for further clinical development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于治疗转化应用的生物相容性聚合物基微型/纳米机器人
近来,具有自推进能力的微型/纳米机器人(MNRs)已成为一种很有前途的智能平台,可用于诊断、治疗和治疗应用。特别是基于聚合物的 MNR,因其固有的生物相容性和多功能性而备受关注,并被积极探索用于各种医疗应用。由于 MNRs 从实验室到临床的转化势在必行,因此将适当的聚合物用于 MNRs 是一项关键策略,可促使 MNRs 进入下一阶段。在本综述中,我们将介绍 MNR 中的多功能通用聚合物及其生物降解性、运动控制、货物装载和释放、粘附性和其他特性。随后,我们回顾了基于聚合物的 MNR 在生物成像、生物传感、药物输送和组织工程方面的治疗应用。此外,我们还探讨了促进聚合物 MNR 转化发展所必须克服的挑战以及未来展望。这篇综述将为了解与聚合物 MNR 相关的最先进技术提供宝贵的见解,并有助于推动其进一步的临床开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Controlled Release
Journal of Controlled Release 医学-化学综合
CiteScore
18.50
自引率
5.60%
发文量
700
审稿时长
39 days
期刊介绍: The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System. Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries. Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.
期刊最新文献
Combination of multivalent DR5 receptor clustering agonists and histone deacetylase inhibitors for treatment of colon cancer. Leveraging machine learning to streamline the development of liposomal drug delivery systems. Controlled release of mesenchymal stem cell-derived nanovesicles through glucose- and reactive oxygen species-responsive hydrogels accelerates diabetic wound healing. Reactive oxygen species-responsive polydopamine-PtCuTe nanoparticle-loaded microneedle system for promoting the healing of infected skin wounds. Phage-liposome nanoconjugates for orthopedic biofilm eradication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1