{"title":"Developing a Deep Learning network “MSCP-Net” to generate stalk anatomical traits related with crop lodging and yield in maize","authors":"","doi":"10.1016/j.eja.2024.127325","DOIUrl":null,"url":null,"abstract":"<div><p>Plant stem is essential for the delivery of resources and has a great impact on plant lodging resistance and yield. However, how to accurately and efficiently extract structural information from crop stems is a big headache. In this study, we first established a Maize Stalk Cross-section Phenotype (MSCP) dataset containing anatomical information of 990 images from hand-cut transections of stalks. Then, to large-scale measure the stalk anatomy features, we developed a Maize Stalk Cross-section Phenotyping Network (MSCP-Net) which integrated a convolutional neural network and the methods of instance segmentation and key point detection. A total of 14 stalk anatomical parameters (traits) can be automatically produced with high [email protected] (0.907) for the parameter “vascular bundles segmentation” and high DICE (0.864) for the parameter “functional zones segmentation”. The cross-validation with the MSCP dataset indicated the good performance of MSCP-Net in predicting anatomical traits. On this basis, the correlation analysis across 14 anatomical traits and 12 agronomic importance traits in 110 maize inbred-lines was conducted and revealed that the stalk related traits (stem cross-section, large vascular bundles, fiber contents, and aerial roots) are key indicators for lodging resistance and grain yield of maize. In addition, the maize inbred-lines were classified into two groups, and the higher value of group II compared with group I in breeding hybrid varieties was discussed. The results demonstrated that the MSCP-Net is expected to be a useful tool to rapidly obtain stem anatomical traits which are agronomic important in maize genetic improvement.</p></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1161030124002466","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant stem is essential for the delivery of resources and has a great impact on plant lodging resistance and yield. However, how to accurately and efficiently extract structural information from crop stems is a big headache. In this study, we first established a Maize Stalk Cross-section Phenotype (MSCP) dataset containing anatomical information of 990 images from hand-cut transections of stalks. Then, to large-scale measure the stalk anatomy features, we developed a Maize Stalk Cross-section Phenotyping Network (MSCP-Net) which integrated a convolutional neural network and the methods of instance segmentation and key point detection. A total of 14 stalk anatomical parameters (traits) can be automatically produced with high [email protected] (0.907) for the parameter “vascular bundles segmentation” and high DICE (0.864) for the parameter “functional zones segmentation”. The cross-validation with the MSCP dataset indicated the good performance of MSCP-Net in predicting anatomical traits. On this basis, the correlation analysis across 14 anatomical traits and 12 agronomic importance traits in 110 maize inbred-lines was conducted and revealed that the stalk related traits (stem cross-section, large vascular bundles, fiber contents, and aerial roots) are key indicators for lodging resistance and grain yield of maize. In addition, the maize inbred-lines were classified into two groups, and the higher value of group II compared with group I in breeding hybrid varieties was discussed. The results demonstrated that the MSCP-Net is expected to be a useful tool to rapidly obtain stem anatomical traits which are agronomic important in maize genetic improvement.
期刊介绍:
The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics:
crop physiology
crop production and management including irrigation, fertilization and soil management
agroclimatology and modelling
plant-soil relationships
crop quality and post-harvest physiology
farming and cropping systems
agroecosystems and the environment
crop-weed interactions and management
organic farming
horticultural crops
papers from the European Society for Agronomy bi-annual meetings
In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.