{"title":"Feasibility of implementing RPA coupled with CRISPR-Cas12a (RPA-Cas12a) for Hepatozoon canis detection in dogs","authors":"Suphaporn Paenkaew , Anocha Poommouang , Waranee Pradit , Siriwadee Chomdej , Korakot Nganvongpanit , Puntita Siengdee , Kittisak Buddhachat","doi":"10.1016/j.vetpar.2024.110298","DOIUrl":null,"url":null,"abstract":"<div><p>Hepatozoonosis, caused by the protozoan <em>Hepatozoon canis</em>, is a prevalent blood disease affecting owned and stray dogs and cats. The prevalence of these parasites among companion animals in Thailand remains poorly understood. Diagnosing the old-world form of the disease is challenging due to the wide range of nonspecific clinical signs and the reliance on finding low levels of <em>Hepatozoon</em> gamonts in blood smears for conventional diagnosis. PCR demonstrates high specificity and sensitivity but it requires sophisticated instrumentation. Therefore, we established recombinase polymerase amplification (RPA) coupled with Cas12a for <em>H. canis</em> detection based on 18S rRNA. Our findings showed that RPA-Cas12a using gRNA_H was highly specific to <em>H. canis</em>, without yielding positives for other pathogen species including Babesia species. Even in cases of co-infection, RPA-Cas12a only detected positives in samples containing <em>H. canis</em>. This approach detected minimal amounts of <em>H. canis</em>18S rRNA-harboring plasmid at 10 copies per reaction, whereas plasmid-spiked canine blood enabled detection at a minimal amount of 100 copies per reaction. The performance of RPA-Cas12a was validated by comparing it with quantitative PCR-high resolution melting analysis (qPCR-HRM) and sequencing based on 35 canine blood samples. RPA-Cas12a demonstrated precision and accuracy values of 94 % and 90 %, respectively comparable to qPCR-HRM. Overall, these results indicate that RPA-Cas12a serves as a promising tool for <em>H. canis</em> detection as indicated by comparable performance to qPCR-HRM and is suitable for implementation in small animal hospitals or clinics due to its minimal resource requirements, thereby contributing to effective diagnosis and treatment for infected dogs.</p></div>","PeriodicalId":23716,"journal":{"name":"Veterinary parasitology","volume":"331 ","pages":"Article 110298"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary parasitology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304401724001870","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatozoonosis, caused by the protozoan Hepatozoon canis, is a prevalent blood disease affecting owned and stray dogs and cats. The prevalence of these parasites among companion animals in Thailand remains poorly understood. Diagnosing the old-world form of the disease is challenging due to the wide range of nonspecific clinical signs and the reliance on finding low levels of Hepatozoon gamonts in blood smears for conventional diagnosis. PCR demonstrates high specificity and sensitivity but it requires sophisticated instrumentation. Therefore, we established recombinase polymerase amplification (RPA) coupled with Cas12a for H. canis detection based on 18S rRNA. Our findings showed that RPA-Cas12a using gRNA_H was highly specific to H. canis, without yielding positives for other pathogen species including Babesia species. Even in cases of co-infection, RPA-Cas12a only detected positives in samples containing H. canis. This approach detected minimal amounts of H. canis18S rRNA-harboring plasmid at 10 copies per reaction, whereas plasmid-spiked canine blood enabled detection at a minimal amount of 100 copies per reaction. The performance of RPA-Cas12a was validated by comparing it with quantitative PCR-high resolution melting analysis (qPCR-HRM) and sequencing based on 35 canine blood samples. RPA-Cas12a demonstrated precision and accuracy values of 94 % and 90 %, respectively comparable to qPCR-HRM. Overall, these results indicate that RPA-Cas12a serves as a promising tool for H. canis detection as indicated by comparable performance to qPCR-HRM and is suitable for implementation in small animal hospitals or clinics due to its minimal resource requirements, thereby contributing to effective diagnosis and treatment for infected dogs.
期刊介绍:
The journal Veterinary Parasitology has an open access mirror journal,Veterinary Parasitology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
This journal is concerned with those aspects of helminthology, protozoology and entomology which are of interest to animal health investigators, veterinary practitioners and others with a special interest in parasitology. Papers of the highest quality dealing with all aspects of disease prevention, pathology, treatment, epidemiology, and control of parasites in all domesticated animals, fall within the scope of the journal. Papers of geographically limited (local) interest which are not of interest to an international audience will not be accepted. Authors who submit papers based on local data will need to indicate why their paper is relevant to a broader readership.
Parasitological studies on laboratory animals fall within the scope of the journal only if they provide a reasonably close model of a disease of domestic animals. Additionally the journal will consider papers relating to wildlife species where they may act as disease reservoirs to domestic animals, or as a zoonotic reservoir. Case studies considered to be unique or of specific interest to the journal, will also be considered on occasions at the Editors'' discretion. Papers dealing exclusively with the taxonomy of parasites do not fall within the scope of the journal.