How to find helpful health-related knowledge in the online healthcare community

IF 8.2 2区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Information & Management Pub Date : 2024-08-24 DOI:10.1016/j.im.2024.104029
Fengyu Zhang, Xihua Li
{"title":"How to find helpful health-related knowledge in the online healthcare community","authors":"Fengyu Zhang,&nbsp;Xihua Li","doi":"10.1016/j.im.2024.104029","DOIUrl":null,"url":null,"abstract":"<div><p>With the prevalence of online healthcare communities (OHCs), increasingly more people are seeking health-related information in OHCs. However, the large amount of health-related knowledge of varying quality poses a challenge for people to quickly find truly helpful knowledge. This study proposes a framework for automatically identifying helpful health-related knowledge based on a knowledge adoption model and machine learning techniques. Extensive experiments on the dataset from one of China's largest OHCs have demonstrated the superiority of our framework. This study strengthens the understanding of readers’ value judgments of online health-related knowledge and enriches research in information systems and knowledge management.</p></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"61 7","pages":"Article 104029"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378720624001113","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the prevalence of online healthcare communities (OHCs), increasingly more people are seeking health-related information in OHCs. However, the large amount of health-related knowledge of varying quality poses a challenge for people to quickly find truly helpful knowledge. This study proposes a framework for automatically identifying helpful health-related knowledge based on a knowledge adoption model and machine learning techniques. Extensive experiments on the dataset from one of China's largest OHCs have demonstrated the superiority of our framework. This study strengthens the understanding of readers’ value judgments of online health-related knowledge and enriches research in information systems and knowledge management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
如何在在线医疗保健社区中找到有用的健康相关知识
随着在线医疗保健社区(OHC)的普及,越来越多的人开始在 OHC 中寻求与健康相关的信息。然而,大量质量参差不齐的健康相关知识给人们快速找到真正有用的知识带来了挑战。本研究基于知识采用模型和机器学习技术,提出了一种自动识别有用健康相关知识的框架。在中国最大的健康中心之一的数据集上进行的广泛实验证明了我们的框架的优越性。这项研究加强了对读者对在线健康相关知识的价值判断的理解,丰富了信息系统和知识管理方面的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information & Management
Information & Management 工程技术-计算机:信息系统
CiteScore
17.90
自引率
6.10%
发文量
123
审稿时长
1 months
期刊介绍: Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.
期刊最新文献
Cutting corners as a coping strategy in information technology use: Unraveling the mind's dilemma Cybersecurity end-user compliance: Password management versus update compliance Towards new frontiers: How attainment discrepancy affects exploratory behavior in crowdfunding What drives users to tip? The impact of contributor experience, content length, and content type on online video sharing platforms An ensemble deep learning model for fast classification of Twitter spam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1