Mechanistic analysis of hydrogen-rich Co-gasification of pine wood and polypropylene-based waste masks using Fe/Dol catalyst

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS Journal of The Energy Institute Pub Date : 2024-08-30 DOI:10.1016/j.joei.2024.101801
{"title":"Mechanistic analysis of hydrogen-rich Co-gasification of pine wood and polypropylene-based waste masks using Fe/Dol catalyst","authors":"","doi":"10.1016/j.joei.2024.101801","DOIUrl":null,"url":null,"abstract":"<div><p>Disposable masks, predominantly made of polypropylene melt-blown fabric, present a significant environmental challenge due to their large volume and resistance to natural degradation. This study explores the co-gasification of forestry waste, specifically pine wood, and waste masks to enhance biomass gasification efficiency while enabling the high-value utilization of waste materials. The Fe/Dol catalyst, prepared by loading transition metal Fe onto calcined dolomite using the impregnation method, was tested in a two-stage fixed-bed gasification system. Steam was employed as the gasifying agent. The study systematically examines the effects of steam flow rate, gasification reforming temperature, the mixing ratio of pine wood to masks, and Fe loading on the catalyst's performance in gas-phase and liquid-phase product formation.Characterization analyses revealed that Fe oxides facilitate the cleavage of aromatic rings in aromatic compounds, leading to the formation of two-carbon chain segments and promoting the production of ethylene and propylene from aliphatic hydrocarbons. Additionally, the catalyst enhanced tar cracking, generating free radicals and ring bonds. Experimental results indicate that at a steam flow rate of 3 mg/min, a gasification temperature of 850 °C, a pine wood to mask mixing ratio of 1:2, and an Fe loading of 8 %, the hydrogen (H<sub>2</sub>) volume fraction reached 52.48 %, with a gas yield of 1.67 m³/kg and a hydrogen production rate of 78.25 g/kg.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124002794","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Disposable masks, predominantly made of polypropylene melt-blown fabric, present a significant environmental challenge due to their large volume and resistance to natural degradation. This study explores the co-gasification of forestry waste, specifically pine wood, and waste masks to enhance biomass gasification efficiency while enabling the high-value utilization of waste materials. The Fe/Dol catalyst, prepared by loading transition metal Fe onto calcined dolomite using the impregnation method, was tested in a two-stage fixed-bed gasification system. Steam was employed as the gasifying agent. The study systematically examines the effects of steam flow rate, gasification reforming temperature, the mixing ratio of pine wood to masks, and Fe loading on the catalyst's performance in gas-phase and liquid-phase product formation.Characterization analyses revealed that Fe oxides facilitate the cleavage of aromatic rings in aromatic compounds, leading to the formation of two-carbon chain segments and promoting the production of ethylene and propylene from aliphatic hydrocarbons. Additionally, the catalyst enhanced tar cracking, generating free radicals and ring bonds. Experimental results indicate that at a steam flow rate of 3 mg/min, a gasification temperature of 850 °C, a pine wood to mask mixing ratio of 1:2, and an Fe loading of 8 %, the hydrogen (H2) volume fraction reached 52.48 %, with a gas yield of 1.67 m³/kg and a hydrogen production rate of 78.25 g/kg.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 Fe/Dol 催化剂对松木和聚丙烯基废弃掩模进行富氢共气化的机理分析
一次性口罩主要由聚丙烯熔喷织物制成,由于其体积大且不易自然降解,给环境带来了巨大挑战。本研究探讨了林业废弃物(特别是松木)和废弃口罩的联合气化,以提高生物质气化效率,同时实现废弃材料的高价值利用。采用浸渍法将过渡金属 Fe 添加到煅烧白云石上制备的 Fe/Dol 催化剂在两级固定床气化系统中进行了测试。气化剂采用蒸汽。研究系统地考察了蒸汽流速、气化重整温度、松木与掩模的混合比以及铁的负载量对催化剂在气相和液相产品形成中性能的影响。表征分析表明,铁氧化物可促进芳香族化合物中芳香环的裂解,从而形成双碳链段,并促进脂肪烃生产乙烯和丙烯。此外,催化剂还能促进焦油裂解,产生自由基和环键。实验结果表明,在蒸汽流速为 3 mg/min、气化温度为 850 ℃、松木与掩蔽剂混合比为 1:2、铁负载为 8 % 的条件下,氢气(H2)体积分数达到 52.48 %,气体产量为 1.67 m³/kg,氢气生产率为 78.25 g/kg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
期刊最新文献
Boosting light olefin production from pyrolysis of low-density polyethylene: A two-stage catalytic process The effects of NH3 pre-cracking and initial temperature on the intrinsic instability and NOx emissions of NH3/bio-syngas/air premixed flames Experimental study of ammonia energy ratio on combustion and emissions from ammonia-gasoline dual-fuel engine at various load conditions Effects of thermophysical properties on heterogeneous reaction dynamics of methane/oxygen mixtures in a micro catalytic combustion chamber Thermodynamic and molecular dynamics study of methane dry reforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1