{"title":"Isotope-based source assessment of water flowing from storm sewer systems to a receiving river during dry weather periods","authors":"","doi":"10.1016/j.watres.2024.122333","DOIUrl":null,"url":null,"abstract":"<div><p>Urban stormwater management systems, particularly storm sewers, are critical for managing runoff in urban areas. These systems are designed to function during wet weather events; however, field-based observations of these systems suggest that they may also be active flow pathways in dry weather conditions, ultimately contributing to streamflow. Unlike dry weather flow in wastewater systems, storm sewer dry weather flow has not been thoroughly explored. This research used stable isotopes of oxygen and hydrogen in water to examine the sources of dry weather flow from storm sewers in a highly urban catchment. A stable isotope mixing model was applied at the outfalls of two stormwater catchments and the receiving Black Creek, located in Toronto, Canada. Findings suggest that during dry periods, storm sewers receive non-stormwater inputs from tap water, wastewater, and groundwater, along with some precipitation, and that these sources may constitute up to 19 % of Black Creek's flow at the watershed scale. Seasonal patterns in flow and water sources were observed for the Black Creek and outfalls. At one outfall, dry weather flow was predominantly from the water distribution system (i.e., tap water and/or wastewater) throughout spring, summer, and fall. In contrast, at the second outfall, groundwater dominated in spring and summer, and groundwater and water distribution were equally proportioned in fall. Black Creek baseflow comprises a dynamic mix of water sources that at times are similar to the sources observed at the stormwater outfalls. Considering these findings, future work should incorporate strategic sampling of additional outfalls, and multiple years of data collection to explore inter-annual variability in these processes and focus on replicating a similar study in other urban watersheds with different climates and/or water infrastructure design. The study findings highlight that our understanding of dry weather flow from storm sewers is relatively limited, emphasizing the need for further exploration of this phenomenon to inform urban hydrological modelling, water quality studies, and urban water management.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0043135424012326/pdfft?md5=b775a286c188785170e99fe6a5443e28&pid=1-s2.0-S0043135424012326-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424012326","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Urban stormwater management systems, particularly storm sewers, are critical for managing runoff in urban areas. These systems are designed to function during wet weather events; however, field-based observations of these systems suggest that they may also be active flow pathways in dry weather conditions, ultimately contributing to streamflow. Unlike dry weather flow in wastewater systems, storm sewer dry weather flow has not been thoroughly explored. This research used stable isotopes of oxygen and hydrogen in water to examine the sources of dry weather flow from storm sewers in a highly urban catchment. A stable isotope mixing model was applied at the outfalls of two stormwater catchments and the receiving Black Creek, located in Toronto, Canada. Findings suggest that during dry periods, storm sewers receive non-stormwater inputs from tap water, wastewater, and groundwater, along with some precipitation, and that these sources may constitute up to 19 % of Black Creek's flow at the watershed scale. Seasonal patterns in flow and water sources were observed for the Black Creek and outfalls. At one outfall, dry weather flow was predominantly from the water distribution system (i.e., tap water and/or wastewater) throughout spring, summer, and fall. In contrast, at the second outfall, groundwater dominated in spring and summer, and groundwater and water distribution were equally proportioned in fall. Black Creek baseflow comprises a dynamic mix of water sources that at times are similar to the sources observed at the stormwater outfalls. Considering these findings, future work should incorporate strategic sampling of additional outfalls, and multiple years of data collection to explore inter-annual variability in these processes and focus on replicating a similar study in other urban watersheds with different climates and/or water infrastructure design. The study findings highlight that our understanding of dry weather flow from storm sewers is relatively limited, emphasizing the need for further exploration of this phenomenon to inform urban hydrological modelling, water quality studies, and urban water management.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.