Formation and radiolytic alteration of uraniferous solid bitumen related to hydrothermal base-metal mineralization in the Bytíz deposit, Příbram district, Czech Republic

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS International Journal of Coal Geology Pub Date : 2024-08-23 DOI:10.1016/j.coal.2024.104590
{"title":"Formation and radiolytic alteration of uraniferous solid bitumen related to hydrothermal base-metal mineralization in the Bytíz deposit, Příbram district, Czech Republic","authors":"","doi":"10.1016/j.coal.2024.104590","DOIUrl":null,"url":null,"abstract":"<div><p>The Bytíz deposit is a part of the Příbram uranium and base-metal ore district. It is an example of a vein-type deposit with polyphase hydrothermal mineralization. Samples of uraniferous solid bitumen from Bytíz with U content up to 38 wt% are characterized petrologically, geochemically, and mineralogically using EPMA, Raman and infrared microspectroscopy. The bitumen-bearing samples consist of base-metal sulfides: galena, sphalerite, pyrite, chalcopyrite, and also minor amounts of tetrahedrite, stibnite, and acanthite, associated with Mn-bearing calcite, quartz and silicates (chlorite, muscovite). Solid bitumens were found in the form of small veins and droplets, and roundish to irregular accumulations, in association with uraninite and carbonate veins.</p><p>U-bearing minerals in the studied samples are represented by uraninite and more rarely by coffinite. Three generations of uraninite in association with solid bitumen were distinguished: 1. spherulites and large grains, filled with organic phase in the cracks; 2. as a part of complex textures inside areas with organic matter; in this case, the uraninite was assumed to have been remobilized; and 3. small inclusions in the latest calcite veins.</p><p>More than 80 vol% of the solid bitumen from the vein fillings appeared to be radiolytically altered. Radiolytic alteration results in changes in optical properties and in composition, and in the formation of various textures around uraninite grains: halos, and irregular textures from simple massive to flow, dendritic, and fractured to a very complex morphology. The random reflectance values of unaltered mineral-free bitumen range from 0.45% to 0.99%, while in the radiolytically altered bitumen the average reflectance values are higher, from approximately 1.72% to 3.44%.</p><p>The degree of graphitization of the organic matter was assessed by infrared micro-spectroscopy. Spectral maps show significant destruction changes of the aliphatic C<img>H bonds and an increase in the content of oxygen functional groups in the vicinity of U minerals.</p><p>On the element distribution maps, obtained by EPMA, the distribution of S, U, Pb and other elements across solid bitumen in the vicinity of uraninite and coffinite has a very heterogeneous character. An elevated content of sulfur in bitumen was also found, as well as a clear interdependence between S and C. It is suggested that the presence of sulfur in solid bitumen may result in ‘clouding’ of the solid bitumen with tiny stibnite grains. The dark rims of the halos observed under the optical microscope may be due to an elevated U content at the rims around the uraninite.</p><p>Based on analysis of complex textural relationships of the solid bitumens with coexisting minerals, the formation of solid bitumen in association with uraninite is therefore assumed to relate to several stages of the influx of hydrothermal fluid. The temperature of the fluid, associated with bitumen formation was estimated to be up to 270 °C, according to chlorite thermometry.</p></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Geology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166516224001472","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The Bytíz deposit is a part of the Příbram uranium and base-metal ore district. It is an example of a vein-type deposit with polyphase hydrothermal mineralization. Samples of uraniferous solid bitumen from Bytíz with U content up to 38 wt% are characterized petrologically, geochemically, and mineralogically using EPMA, Raman and infrared microspectroscopy. The bitumen-bearing samples consist of base-metal sulfides: galena, sphalerite, pyrite, chalcopyrite, and also minor amounts of tetrahedrite, stibnite, and acanthite, associated with Mn-bearing calcite, quartz and silicates (chlorite, muscovite). Solid bitumens were found in the form of small veins and droplets, and roundish to irregular accumulations, in association with uraninite and carbonate veins.

U-bearing minerals in the studied samples are represented by uraninite and more rarely by coffinite. Three generations of uraninite in association with solid bitumen were distinguished: 1. spherulites and large grains, filled with organic phase in the cracks; 2. as a part of complex textures inside areas with organic matter; in this case, the uraninite was assumed to have been remobilized; and 3. small inclusions in the latest calcite veins.

More than 80 vol% of the solid bitumen from the vein fillings appeared to be radiolytically altered. Radiolytic alteration results in changes in optical properties and in composition, and in the formation of various textures around uraninite grains: halos, and irregular textures from simple massive to flow, dendritic, and fractured to a very complex morphology. The random reflectance values of unaltered mineral-free bitumen range from 0.45% to 0.99%, while in the radiolytically altered bitumen the average reflectance values are higher, from approximately 1.72% to 3.44%.

The degree of graphitization of the organic matter was assessed by infrared micro-spectroscopy. Spectral maps show significant destruction changes of the aliphatic CH bonds and an increase in the content of oxygen functional groups in the vicinity of U minerals.

On the element distribution maps, obtained by EPMA, the distribution of S, U, Pb and other elements across solid bitumen in the vicinity of uraninite and coffinite has a very heterogeneous character. An elevated content of sulfur in bitumen was also found, as well as a clear interdependence between S and C. It is suggested that the presence of sulfur in solid bitumen may result in ‘clouding’ of the solid bitumen with tiny stibnite grains. The dark rims of the halos observed under the optical microscope may be due to an elevated U content at the rims around the uraninite.

Based on analysis of complex textural relationships of the solid bitumens with coexisting minerals, the formation of solid bitumen in association with uraninite is therefore assumed to relate to several stages of the influx of hydrothermal fluid. The temperature of the fluid, associated with bitumen formation was estimated to be up to 270 °C, according to chlorite thermometry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
捷克共和国普里布拉姆地区 Bytíz 矿床中与热液贱金属矿化有关的含铀固体沥青的形成和放射性蚀变
Bytíz 矿床是普里布拉姆铀和贱金属矿区的一部分。它是多相热液成矿的脉型矿床的一个范例。利用 EPMA、拉曼和红外微光谱技术,对来自 Bytíz 的含铀固体沥青样本(铀含量高达 38 wt%)进行了岩石学、地球化学和矿物学鉴定。含沥青的样本由贱金属硫化物组成:方铅矿、闪锌矿、黄铁矿、黄铜矿,以及少量的四黄铁矿、闪锌矿和黄铜矿,并与含锰方解石、石英和硅酸盐(绿泥石、麝香石)伴生。固体沥青以小矿脉和液滴的形式存在,呈圆形至不规则堆积,与铀矿石和碳酸盐矿脉伴生。与固体沥青伴生的铀矿分为三代:1.球状和大颗粒,裂缝中充满有机相;2.作为有机物区域内复杂纹理的一部分;在这种情况下,假定铀矿已被重新移动;3.最新方解石矿脉中的小包裹体。放射性蚀变导致光学性质和成分发生变化,并在铀矿石晶粒周围形成各种纹理:光晕和不规则纹理,从简单的块状纹理到流动纹理、树枝状纹理、断裂纹理到非常复杂的形态。未改变的无矿物沥青的随机反射率值在 0.45% 到 0.99% 之间,而经放射性改变的沥青的平均反射率值更高,约在 1.72% 到 3.44% 之间。光谱图显示,在铀矿物附近,脂肪族 CH 键发生了明显的破坏变化,氧官能团的含量也有所增加。根据 EPMA 获得的元素分布图,在铀矿石和棺石附近的固体沥青中,S、U、Pb 和其他元素的分布具有很强的异质性。研究还发现,沥青中的硫含量较高,而且 S 和 C 之间存在明显的相互依存关系。根据对固体沥青与共存矿物的复杂纹理关系的分析,推测固体沥青与铀矿石的形成与热液流入的几个阶段有关。根据绿泥石测温法,与沥青形成有关的流体温度估计高达 270 ℃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Coal Geology
International Journal of Coal Geology 工程技术-地球科学综合
CiteScore
11.00
自引率
14.30%
发文量
145
审稿时长
38 days
期刊介绍: The International Journal of Coal Geology deals with fundamental and applied aspects of the geology and petrology of coal, oil/gas source rocks and shale gas resources. The journal aims to advance the exploration, exploitation and utilization of these resources, and to stimulate environmental awareness as well as advancement of engineering for effective resource management.
期刊最新文献
Effects of thermal intrusion on biomarker distributions in the Alum Shale from south-central Sweden Disentangling causes of the limestone-marl bedding couplets in the Bridge Creek Limestone Member of the Greenhorn Formation through an integrated sedimentological and organic petrology analysis Tungsten (W) geochemistry in north Asian coals (Siberia, Russian far east and Kazakhstan) Editorial Board Substantial gas enrichment in shales influenced by volcanism during the Ordovician–Silurian transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1