Advancements in CIGS/ZnS heterojunction solar cells: Experimental and numerical analysis

IF 3.1 3区 物理与天体物理 Q2 Engineering Optik Pub Date : 2024-08-23 DOI:10.1016/j.ijleo.2024.172008
Taoufik Chargui , Fatima Lmai , Khalid Rahmani
{"title":"Advancements in CIGS/ZnS heterojunction solar cells: Experimental and numerical analysis","authors":"Taoufik Chargui ,&nbsp;Fatima Lmai ,&nbsp;Khalid Rahmani","doi":"10.1016/j.ijleo.2024.172008","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a comprehensive experimental investigation conducted on a CIGS-based solar cell incorporating a ZnS buffer layer. The primary objective was to determine key parameters of the CIGS/ZnS heterojunction, including parasitic resistances (<span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>sh</mi></mrow></msub></math></span>), ideality factor (n), and barrier height (<span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span>), using experimental current-voltage (I-V) characteristics over a temperature range of 150 K to 300 K under dark conditions. The heterojunction was modelled using a single-diode electrical circuit that accounted for parasitic resistances. Two methods were employed for parameter determination: direct analysis of the (I-V) curves and Cheung's method. Additionally, the charge transport mechanism within the heterojunction is investigated and discussed. Furthermore, the performance of the Al:ZnO/i:ZnO/ZnS/CIGS/Mo solar cell was assessed using the SCAPS-1D simulator, demonstrating an initial solar energy conversion efficiency of 15.01 %. To enhance this efficiency, a hole transport layer (HTL) was integrated between the back electrode and the absorber layer. Extensive studies were conducted to optimize the thickness and doping density of the HTL, including a comparative analysis of different materials used as HTLs. These optimizations resulted in a significant increase in conversion efficiency, reaching up to 28.68 %.</p></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"314 ","pages":"Article 172008"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624004078","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comprehensive experimental investigation conducted on a CIGS-based solar cell incorporating a ZnS buffer layer. The primary objective was to determine key parameters of the CIGS/ZnS heterojunction, including parasitic resistances (Rs and Rsh), ideality factor (n), and barrier height (ϕB), using experimental current-voltage (I-V) characteristics over a temperature range of 150 K to 300 K under dark conditions. The heterojunction was modelled using a single-diode electrical circuit that accounted for parasitic resistances. Two methods were employed for parameter determination: direct analysis of the (I-V) curves and Cheung's method. Additionally, the charge transport mechanism within the heterojunction is investigated and discussed. Furthermore, the performance of the Al:ZnO/i:ZnO/ZnS/CIGS/Mo solar cell was assessed using the SCAPS-1D simulator, demonstrating an initial solar energy conversion efficiency of 15.01 %. To enhance this efficiency, a hole transport layer (HTL) was integrated between the back electrode and the absorber layer. Extensive studies were conducted to optimize the thickness and doping density of the HTL, including a comparative analysis of different materials used as HTLs. These optimizations resulted in a significant increase in conversion efficiency, reaching up to 28.68 %.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CIGS/ZnS 异质结太阳能电池的进展:实验和数值分析
本研究介绍了对含有 ZnS 缓冲层的铜铟镓硒太阳能电池进行的全面实验研究。主要目的是利用黑暗条件下 150 K 至 300 K 温度范围内的实验电流-电压(I-V)特性,确定 CIGS/ZnS 异质结的关键参数,包括寄生电阻(Rs 和 Rsh)、ideality 因子(n)和势垒高度(jB)。异质结采用单二极管电路建模,其中考虑了寄生电阻。参数确定采用了两种方法:直接分析 (I-V) 曲线和张氏方法。此外,还对异质结内的电荷传输机制进行了研究和讨论。此外,还使用 SCAPS-1D 模拟器评估了 Al:ZnO/i:ZnO/ZnS/CIGS/Mo 太阳能电池的性能,结果显示其初始太阳能转换效率为 15.01%。为了提高这一效率,在背电极和吸收层之间集成了空穴传输层(HTL)。对 HTL 的厚度和掺杂密度进行了广泛的优化研究,包括对用作 HTL 的不同材料进行比较分析。这些优化措施显著提高了转换效率,最高可达 28.68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
期刊最新文献
Optical solitons for generalised perturbed nonlinear Schrödinger model in the presence of dual-power law nonlinear medium Robust image encryption algorithm based on oscillated substitution and effective confusion module with novel chaining permutation and pixel mutation Transport of intensity phase retrieval in the presence of intensity variations and unknown boundary conditions Synthesis and characterization of InGaZnO nanocomposites: An insight of optical, dielectric, and magnetic properties Ultra-broadband mid-infrared supercontinuum generation in square lattice As2S3 chalcogenide photonic crystal fibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1