Vishweshwar Rao B , Sriram K V , Narayanamurthy C.S
{"title":"Improved performance of three mirror anastigmat telescope with freeform surface: Optical design, testing and validation aspects","authors":"Vishweshwar Rao B , Sriram K V , Narayanamurthy C.S","doi":"10.1016/j.ijleo.2024.171998","DOIUrl":null,"url":null,"abstract":"<div><p>\"In this paper, the optical design of a Three Mirror Anastigmat (TMA) Telescope is modified by substitution of a convex freeform secondary and optimization carried out to obtain improved performance. The proposed convex freeform surface is precisely manufactured using the bonnet polishing technique and tested with a sub-aperture stitched algorithm, meeting the specified surface accuracy requirements. Further, to validate the design, the realized secondary freeform optic is tested in conjunction with primary and tertiary optics in the conceived TMA configuration. The telescope system performance is established using a double-pass interferometric test setup. The modified design enhances the telescope system's performance in the extended field of view (FoV) from ±2.5° to ±3.5° across the track and from ±0.4° to ±0.6° along the track. Measured performance results demonstrate an average modulation transfer function (MTF) of 0.56 and an average Strehl ratio of 0.64 at all field points. The effective focal length of the system is computed to be 975 mm. In summary, the proposed freeform surface significantly improves the optical system performance within the available real estate of the envisaged space telescope system.\"</p></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"314 ","pages":"Article 171998"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624003978","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
"In this paper, the optical design of a Three Mirror Anastigmat (TMA) Telescope is modified by substitution of a convex freeform secondary and optimization carried out to obtain improved performance. The proposed convex freeform surface is precisely manufactured using the bonnet polishing technique and tested with a sub-aperture stitched algorithm, meeting the specified surface accuracy requirements. Further, to validate the design, the realized secondary freeform optic is tested in conjunction with primary and tertiary optics in the conceived TMA configuration. The telescope system performance is established using a double-pass interferometric test setup. The modified design enhances the telescope system's performance in the extended field of view (FoV) from ±2.5° to ±3.5° across the track and from ±0.4° to ±0.6° along the track. Measured performance results demonstrate an average modulation transfer function (MTF) of 0.56 and an average Strehl ratio of 0.64 at all field points. The effective focal length of the system is computed to be 975 mm. In summary, the proposed freeform surface significantly improves the optical system performance within the available real estate of the envisaged space telescope system."
期刊介绍:
Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields:
Optics:
-Optics design, geometrical and beam optics, wave optics-
Optical and micro-optical components, diffractive optics, devices and systems-
Photoelectric and optoelectronic devices-
Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials-
Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis-
Optical testing and measuring techniques-
Optical communication and computing-
Physiological optics-
As well as other related topics.