Feasibility and safety study of advanced prostate biopsy robot system based on MR-TRUS Image flexible fusion technology in animal experiments

IF 2.5 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS SLAS Technology Pub Date : 2024-08-28 DOI:10.1016/j.slast.2024.100184
{"title":"Feasibility and safety study of advanced prostate biopsy robot system based on MR-TRUS Image flexible fusion technology in animal experiments","authors":"","doi":"10.1016/j.slast.2024.100184","DOIUrl":null,"url":null,"abstract":"<div><p>The advanced prostate biopsy robot system has broad application prospects in clinical practice, but due to the deformation and distortion between MR-TRUS (magnetic resonance transrectal ultrasound) images, it poses challenges in biopsy accuracy and safety. The study utilized an advanced prostate biopsy robot system based on MR-TRUS image flexible registration technology and conducted experiments on animal models. Retrospective analysis of the puncture accuracy of 12 animal experiments undergoing prostate puncture using MR-TRUS flexible registration technology from May 2022 to October 2023, and observation of intraoperative and 7-day postoperative complications. The study obtained MR-TRUS images and utilized image processing algorithms for registration to reduce image deformation and distortion. Then, precise positioning and operation are carried out through the robot system to execute the prostate biopsy program. The experimental results indicate that the advanced prostate biopsy robot system based on MR-TRUS image flexible registration technology has demonstrated good feasibility and safety in animal experiments. Image registration technology has successfully reduced image distortion and deformation, improving biopsy accuracy. The precise positioning and operation of robot systems play a crucial role in the biopsy process, reducing the occurrence of complications.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000669/pdfft?md5=bf16682709f9de99755e20b25cb3ef75&pid=1-s2.0-S2472630324000669-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630324000669","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The advanced prostate biopsy robot system has broad application prospects in clinical practice, but due to the deformation and distortion between MR-TRUS (magnetic resonance transrectal ultrasound) images, it poses challenges in biopsy accuracy and safety. The study utilized an advanced prostate biopsy robot system based on MR-TRUS image flexible registration technology and conducted experiments on animal models. Retrospective analysis of the puncture accuracy of 12 animal experiments undergoing prostate puncture using MR-TRUS flexible registration technology from May 2022 to October 2023, and observation of intraoperative and 7-day postoperative complications. The study obtained MR-TRUS images and utilized image processing algorithms for registration to reduce image deformation and distortion. Then, precise positioning and operation are carried out through the robot system to execute the prostate biopsy program. The experimental results indicate that the advanced prostate biopsy robot system based on MR-TRUS image flexible registration technology has demonstrated good feasibility and safety in animal experiments. Image registration technology has successfully reduced image distortion and deformation, improving biopsy accuracy. The precise positioning and operation of robot systems play a crucial role in the biopsy process, reducing the occurrence of complications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 MR-TRUS 图像灵活融合技术的先进前列腺活检机器人系统在动物实验中的可行性和安全性研究
先进的前列腺活检机器人系统在临床上有着广阔的应用前景,但由于磁共振经直肠超声(MR-TRUS)图像之间的变形和扭曲,给活检的准确性和安全性带来了挑战。该研究利用基于 MR-TRUS 图像柔性配准技术的先进前列腺活检机器人系统,并在动物模型上进行了实验。回顾性分析2022年5月至2023年10月使用MR-TRUS柔性配准技术进行前列腺穿刺的12个动物实验的穿刺准确性,并观察术中和术后7天的并发症。该研究获取MR-TRUS图像,并利用图像处理算法进行配准,以减少图像变形和扭曲。然后,通过机器人系统进行精确定位和操作,执行前列腺活检程序。实验结果表明,基于 MR-TRUS 图像柔性配准技术的先进前列腺活检机器人系统在动物实验中表现出良好的可行性和安全性。图像配准技术成功减少了图像失真和变形,提高了活检的准确性。机器人系统的精确定位和操作在活检过程中起着至关重要的作用,可减少并发症的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SLAS Technology
SLAS Technology Computer Science-Computer Science Applications
CiteScore
6.30
自引率
7.40%
发文量
47
审稿时长
106 days
期刊介绍: SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.
期刊最新文献
Management of experimental workflows in robotic cultivation platforms. Application of conjugated polymer nanocomposite materials as biosensors in rehabilitation of ankle joint injuries in martial arts sports. Identification of m6A-related lncRNAs prognostic signature for predicting immunotherapy response in cervical cancer Regional developers’ community accelerates laboratory automation Accelerating covalent binding studies: Direct mass shift measurement with acoustic ejection and TOF-MS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1