D113 resin in-situ loaded with Fe3+ to develop glyphosate adsorbent with the characteristics of salt-resistance and the remarkable saturated adsorption capacity
Yi Sun , Guqing Xiao , Zijun Liu , Dan Wu , Li Xia
{"title":"D113 resin in-situ loaded with Fe3+ to develop glyphosate adsorbent with the characteristics of salt-resistance and the remarkable saturated adsorption capacity","authors":"Yi Sun , Guqing Xiao , Zijun Liu , Dan Wu , Li Xia","doi":"10.1016/j.reactfunctpolym.2024.106031","DOIUrl":null,"url":null,"abstract":"<div><p>There are inorganic salts in glyphosate production liquor and natural water bodies coexisting with glyphosate. It is imperative to develop a salt-tolerant adsorbent for glyphosate in water. Industrial D113 resin undergone two-step transformation to optimize the preparation of D113 in-situ loaded with Fe<sup>3+</sup> (D113-Fe<sup>3+</sup>) as salt-resistance glyphosate adsorbent. The loading amount of Fe<sup>3+</sup> on D113-Fe<sup>3+</sup> is 3.5 mmol/g. The adsorption mechanism revealed that Fe<sup>3+</sup> in D113-Fe<sup>3+</sup> formed Fe-O-P bond with the phosphonate group of glyphosate. At 293 K, the maximum complex ratio of the adsorbed glyphosate to Fe<sup>3+</sup> in D113-Fe<sup>3+</sup> was 2.4:1. At 293 K, the remarkable saturated glyphosate adsorption capacity of D113-Fe<sup>3+</sup> reached 1420.2 mg/g. In pK<sub>2</sub> state of glyphosate, D113-Fe<sup>3+</sup> featured its maximum adsorption capacity at the zero charge point 2.43 of D113-Fe<sup>3+</sup> and 293 K. In glyphosate solution coexisting 0–16 % NaCl, D113-Fe<sup>3+</sup> exhibited stable glyphosate adsorption capacity and salt-resistance compared with D201, D301 and 330 resin. The endothermic and spontaneous adsorption of glyphosate on D113-Fe<sup>3+</sup> can fit Freundlich model and pseudo-second-order model. 2 mol/L NH<sub>3</sub>·H<sub>2</sub>O, 2 mol/L FeCl<sub>3</sub> and 2 mol/L H<sub>2</sub>SO<sub>4</sub> could all regenerate D113-Fe<sup>3+</sup>. The characteristics of salt-resistance and the remarkable saturated adsorption capacity made D113-Fe<sup>3+</sup> comparable to all reported glyphosate adsorbents.</p></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"204 ","pages":"Article 106031"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824002062","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
There are inorganic salts in glyphosate production liquor and natural water bodies coexisting with glyphosate. It is imperative to develop a salt-tolerant adsorbent for glyphosate in water. Industrial D113 resin undergone two-step transformation to optimize the preparation of D113 in-situ loaded with Fe3+ (D113-Fe3+) as salt-resistance glyphosate adsorbent. The loading amount of Fe3+ on D113-Fe3+ is 3.5 mmol/g. The adsorption mechanism revealed that Fe3+ in D113-Fe3+ formed Fe-O-P bond with the phosphonate group of glyphosate. At 293 K, the maximum complex ratio of the adsorbed glyphosate to Fe3+ in D113-Fe3+ was 2.4:1. At 293 K, the remarkable saturated glyphosate adsorption capacity of D113-Fe3+ reached 1420.2 mg/g. In pK2 state of glyphosate, D113-Fe3+ featured its maximum adsorption capacity at the zero charge point 2.43 of D113-Fe3+ and 293 K. In glyphosate solution coexisting 0–16 % NaCl, D113-Fe3+ exhibited stable glyphosate adsorption capacity and salt-resistance compared with D201, D301 and 330 resin. The endothermic and spontaneous adsorption of glyphosate on D113-Fe3+ can fit Freundlich model and pseudo-second-order model. 2 mol/L NH3·H2O, 2 mol/L FeCl3 and 2 mol/L H2SO4 could all regenerate D113-Fe3+. The characteristics of salt-resistance and the remarkable saturated adsorption capacity made D113-Fe3+ comparable to all reported glyphosate adsorbents.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.