A physics-informed impact model refined by multi-fidelity transfer learning

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Extreme Mechanics Letters Pub Date : 2024-08-22 DOI:10.1016/j.eml.2024.102223
Kelsey L. Snapp , Samuel Silverman , Richard Pang , Thomas M. Tiano , Timothy J. Lawton , Emily Whiting , Keith A. Brown
{"title":"A physics-informed impact model refined by multi-fidelity transfer learning","authors":"Kelsey L. Snapp ,&nbsp;Samuel Silverman ,&nbsp;Richard Pang ,&nbsp;Thomas M. Tiano ,&nbsp;Timothy J. Lawton ,&nbsp;Emily Whiting ,&nbsp;Keith A. Brown","doi":"10.1016/j.eml.2024.102223","DOIUrl":null,"url":null,"abstract":"<div><p>Impact performance is a key consideration when designing objects to be encountered in everyday life. Unfortunately, how a structure absorbs energy during an impact event is difficult to predict using traditional methods, such as finite element analysis, because of the complex interactions during high strain-rate compression. Here, we employ a physics-based model to predict impact performance of structures using a single quasistatic experiment and refine that model using intermediate strain rate and impact testing to account for strain-rate dependent strengthening. This model is trained and evaluated using experiments on additively manufactured generalized cylindrical shells. Using transfer learning, the trained model can predict the performance of a new design using data from a single quasistatic test. To validate the transfer learning model, we extrapolate to new impactor masses, new designs, and a new material. The accuracy of this model allows researchers to quickly screen new designs or leverage pre-existing databases of quasistatic test data. Furthermore, when impact tests are necessary to validate design selection, fewer impact tests are necessary to identify optimal performance.</p></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"72 ","pages":"Article 102223"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624001032","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Impact performance is a key consideration when designing objects to be encountered in everyday life. Unfortunately, how a structure absorbs energy during an impact event is difficult to predict using traditional methods, such as finite element analysis, because of the complex interactions during high strain-rate compression. Here, we employ a physics-based model to predict impact performance of structures using a single quasistatic experiment and refine that model using intermediate strain rate and impact testing to account for strain-rate dependent strengthening. This model is trained and evaluated using experiments on additively manufactured generalized cylindrical shells. Using transfer learning, the trained model can predict the performance of a new design using data from a single quasistatic test. To validate the transfer learning model, we extrapolate to new impactor masses, new designs, and a new material. The accuracy of this model allows researchers to quickly screen new designs or leverage pre-existing databases of quasistatic test data. Furthermore, when impact tests are necessary to validate design selection, fewer impact tests are necessary to identify optimal performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多保真度迁移学习改进的物理影响模型
在设计日常生活中遇到的物体时,冲击性能是一个重要的考虑因素。遗憾的是,由于高应变率压缩过程中存在复杂的相互作用,使用有限元分析等传统方法很难预测结构在冲击事件中如何吸收能量。在此,我们采用了一种基于物理学的模型,利用单一的准静态实验来预测结构的冲击性能,并利用中间应变率和冲击测试来完善该模型,以考虑应变率依赖性强化。通过对加成制造的通用圆柱形壳体进行实验,对该模型进行了训练和评估。通过迁移学习,训练有素的模型可以利用单个准静态试验的数据预测新设计的性能。为了验证迁移学习模型,我们对新的冲击器质量、新设计和新材料进行了推断。该模型的准确性使研究人员能够快速筛选新设计或利用已有的准静态试验数据数据库。此外,当需要进行冲击试验来验证设计选择时,只需进行较少的冲击试验即可确定最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
期刊最新文献
Full range fragmentation simulation of nanoflake filler-matrix composite coatings on a polymer substrate A kinematics-based single-actuator setup for constant-curvature bending tests in extremely large deformations Aperture size control in kirigami metamaterials: Towards enhanced performance and applications Origami electronic membranes as highly shape-morphable mechanical and environmental sensing systems Effect of rate on the response and localized transformation patterns in NiTi Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1