Shuaifeng Li , Yu Bin Oh , Seong Jae Choi , Panayotis G. Kevrekidis , Jinkyu Yang
{"title":"On-demand manipulation of topological states using Miura-folded metamaterials","authors":"Shuaifeng Li , Yu Bin Oh , Seong Jae Choi , Panayotis G. Kevrekidis , Jinkyu Yang","doi":"10.1016/j.eml.2025.102294","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancements in topological metamaterials have unveiled fruitful physics and numerous applications. Whereas initial efforts focus on achieving topologically protected edge states through principles of structural symmetry, the burgeoning field now aspires to customize topological states, tailoring their emergence and frequency. Here, our study presents the realization of topological phase transitions utilizing compliant mechanisms on the facets of Miura-folded metamaterials. This approach induces two opposite topological phases, leading to topological states at the interface. Moreover, we exploit the unique folding behavior of Miura-folded metamaterials to tune the frequency of topological states and dynamically toggle their presence. Our research not only paves the way for inducing topological phase transitions in Miura-folded structures but also enables the on-demand control of topological states, with promising applications in wave manipulation and vibration isolation.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"75 ","pages":"Article 102294"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431625000069","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in topological metamaterials have unveiled fruitful physics and numerous applications. Whereas initial efforts focus on achieving topologically protected edge states through principles of structural symmetry, the burgeoning field now aspires to customize topological states, tailoring their emergence and frequency. Here, our study presents the realization of topological phase transitions utilizing compliant mechanisms on the facets of Miura-folded metamaterials. This approach induces two opposite topological phases, leading to topological states at the interface. Moreover, we exploit the unique folding behavior of Miura-folded metamaterials to tune the frequency of topological states and dynamically toggle their presence. Our research not only paves the way for inducing topological phase transitions in Miura-folded structures but also enables the on-demand control of topological states, with promising applications in wave manipulation and vibration isolation.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.