Samuel Krimmel , Richard Otis , Jian Luo , Yu Zhong
{"title":"Charge-dependent CALPHAD analysis of defect chemistry and carrier concentration for space charge layers","authors":"Samuel Krimmel , Richard Otis , Jian Luo , Yu Zhong","doi":"10.1016/j.calphad.2024.102726","DOIUrl":null,"url":null,"abstract":"<div><p>The development of conductive materials plays a crucial role in improving the efficiency of electrochemical processes. In polycrystalline materials, space charge layers (SCLs) adjacent to grain boundaries (GBs) often dictate charge transport behavior. This study explores relaxing the charge neutrality constraint in the CALculation of PHAse Diagrams (CALPHAD) approach as a new method to model the electrical conductivity effects of SCLs. A new charge-dependent defect chemistry analysis is applied to the wustite, magnetite, and hematite phases in the Fe–O binary system. Using pycalphad, charge-dependent results for the molar Gibbs energies, Brouwer diagrams, and charge carrier concentrations were determined for each phase at 1273K within the oxygen partial pressure stability ranges. With a negative charge of 0.16 × 10<sup>−19</sup> C, the hematite and magnetite phases exhibit an increased charge carrier concentration. The opposite trend was observed for wustite. While further work is needed to quantify the electrical conductivity effects of the SCLs and GBs with this approach, it provides a robust thermodynamic foundation to rapidly develop and optimize conductive materials.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591624000683","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of conductive materials plays a crucial role in improving the efficiency of electrochemical processes. In polycrystalline materials, space charge layers (SCLs) adjacent to grain boundaries (GBs) often dictate charge transport behavior. This study explores relaxing the charge neutrality constraint in the CALculation of PHAse Diagrams (CALPHAD) approach as a new method to model the electrical conductivity effects of SCLs. A new charge-dependent defect chemistry analysis is applied to the wustite, magnetite, and hematite phases in the Fe–O binary system. Using pycalphad, charge-dependent results for the molar Gibbs energies, Brouwer diagrams, and charge carrier concentrations were determined for each phase at 1273K within the oxygen partial pressure stability ranges. With a negative charge of 0.16 × 10−19 C, the hematite and magnetite phases exhibit an increased charge carrier concentration. The opposite trend was observed for wustite. While further work is needed to quantify the electrical conductivity effects of the SCLs and GBs with this approach, it provides a robust thermodynamic foundation to rapidly develop and optimize conductive materials.
期刊介绍:
The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.