Inter-fraction motion robustness in a prospective phase II trial on dose-escalated proton reirradiation for locally recurrent rectal cancer

Christina G. Truelsen , Heidi S. Rønde , Jesper F. Kallehauge , Laurids Ø. Poulsen , Birgitte M. Havelund , Bodil G. Pedersen , Lene H. Iversen , Karen-Lise G. Spindler , Camilla S. Kronborg
{"title":"Inter-fraction motion robustness in a prospective phase II trial on dose-escalated proton reirradiation for locally recurrent rectal cancer","authors":"Christina G. Truelsen ,&nbsp;Heidi S. Rønde ,&nbsp;Jesper F. Kallehauge ,&nbsp;Laurids Ø. Poulsen ,&nbsp;Birgitte M. Havelund ,&nbsp;Bodil G. Pedersen ,&nbsp;Lene H. Iversen ,&nbsp;Karen-Lise G. Spindler ,&nbsp;Camilla S. Kronborg","doi":"10.1016/j.phro.2024.100634","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><p>Intensity modulated proton therapy (IMPT) enables generation of conformal dose plans with organ at risk (OAR) sparing potential. However, pelvic IMPT robustness is challenged by inter-fraction motion caused by constant anatomical variations. In this study, the dosimetric impact of inter-fraction motion on target coverage and dose to OAR was quantified in the prospective phase II study ReRad-II on dose-escalated proton reirradiation for locally recurrent rectal cancer (LRRC).</p></div><div><h3>Materials and methods</h3><p>The inter-fraction motion robustness was assessed for the initial twelve patients enrolled in the ReRad-II study. Patients with resectable LRRC were assessed for neoadjuvant IMPT (55 Gy(RBE)/44Fx) and unresectable recurrences for definitive IMPT (57.5–65 Gy(RBE)/ 46-52Fx). Target coverage and dose to OAR were assessed for robustly optimised three-field IMPT, on 12 plan computerized tomography (CT) scans (pCT) − and 47 repetitive control CT scans (cCTs) during the treatment. The target coverage and doses to OAR were re-calculated on each cCT and the mean dose ratio (pCT/cCT-ratio) and target coverage (V<sub>95%</sub>) was evaluated.</p></div><div><h3>Results</h3><p>The target coverage was robust with a mean dose pCT/cCT-ratio of 1.00 (+/-1%). The V<sub>95%</sub> target coverage for every cCT were above the accepted worst-case scenario in the robust evaluation. Considerable variation in bladder-, bowel bag-, and bowel loop volume was observed. The OAR with the largest variation in ratio was the bladder (pCT/cCT-ratio: 1.3 (range: 0.5–4.7).</p></div><div><h3>Conclusions</h3><p>IMPT for dose-escalated reirradiation of LRRC provided anatomically robust target coverage despite OAR changes. Inter-fraction motion resulted in OAR doses varying within clinically acceptable range.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624001040/pdfft?md5=731e13668a424ef4ff17ecc41f64328a&pid=1-s2.0-S2405631624001040-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624001040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose

Intensity modulated proton therapy (IMPT) enables generation of conformal dose plans with organ at risk (OAR) sparing potential. However, pelvic IMPT robustness is challenged by inter-fraction motion caused by constant anatomical variations. In this study, the dosimetric impact of inter-fraction motion on target coverage and dose to OAR was quantified in the prospective phase II study ReRad-II on dose-escalated proton reirradiation for locally recurrent rectal cancer (LRRC).

Materials and methods

The inter-fraction motion robustness was assessed for the initial twelve patients enrolled in the ReRad-II study. Patients with resectable LRRC were assessed for neoadjuvant IMPT (55 Gy(RBE)/44Fx) and unresectable recurrences for definitive IMPT (57.5–65 Gy(RBE)/ 46-52Fx). Target coverage and dose to OAR were assessed for robustly optimised three-field IMPT, on 12 plan computerized tomography (CT) scans (pCT) − and 47 repetitive control CT scans (cCTs) during the treatment. The target coverage and doses to OAR were re-calculated on each cCT and the mean dose ratio (pCT/cCT-ratio) and target coverage (V95%) was evaluated.

Results

The target coverage was robust with a mean dose pCT/cCT-ratio of 1.00 (+/-1%). The V95% target coverage for every cCT were above the accepted worst-case scenario in the robust evaluation. Considerable variation in bladder-, bowel bag-, and bowel loop volume was observed. The OAR with the largest variation in ratio was the bladder (pCT/cCT-ratio: 1.3 (range: 0.5–4.7).

Conclusions

IMPT for dose-escalated reirradiation of LRRC provided anatomically robust target coverage despite OAR changes. Inter-fraction motion resulted in OAR doses varying within clinically acceptable range.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部复发直肠癌剂量递增质子再照射前瞻性 II 期试验中的分段间运动稳健性
背景和目的强度调制质子疗法(IMPT)能够生成保形剂量计划,并具有疏通危险器官(OAR)的潜力。然而,骨盆 IMPT 的稳健性受到了解剖结构持续变化导致的分段间运动的挑战。在这项研究中,前瞻性 II 期研究 ReRad-II 对局部复发直肠癌(LRRC)的剂量递增质子再照射进行了研究,量化了分段间运动对目标覆盖和 OAR 剂量的剂量学影响。对可切除的 LRRC 患者进行了新辅助 IMPT(55 Gy(RBE)/44Fx )评估,对不可切除的复发患者进行了最终 IMPT(57.5-65 Gy(RBE)/46-52Fx )评估。在治疗过程中,通过 12 次计划计算机断层扫描 (CT)(pCT)和 47 次重复对照 CT 扫描(cCT),对稳健优化的三场 IMPT 的靶点覆盖率和 OAR 剂量进行了评估。对每次 cCT 的目标覆盖率和 OAR 剂量进行了重新计算,并评估了平均剂量比(pCT/cCT-ratio)和目标覆盖率(V95%)。在稳健性评估中,每个 cCT 的 V95% 目标覆盖率都高于公认的最坏情况。观察到膀胱、肠袋和肠环容积有相当大的差异。膀胱的OAR比值变化最大(pCT/cCT比值:1.3(范围:0.5-4.7))。分段间移动导致OAR剂量在临床可接受范围内变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
期刊最新文献
Results of 2023 survey on the use of synthetic computed tomography for magnetic resonance Imaging-only radiotherapy: Current status and future steps Head and neck automatic multi-organ segmentation on Dual-Energy Computed Tomography Automatic segmentation for magnetic resonance imaging guided individual elective lymph node irradiation in head and neck cancer patients Development of a novel 3D-printed dynamic anthropomorphic thorax phantom for evaluation of four-dimensional computed tomography Technical feasibility of delivering a simultaneous integrated boost in partial breast irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1