Carolina Rodrigues dos Santos , Guilherme Otávio Rosa e Silva , Camila de Figueiredo Valias , Lucilaine Valéria de Souza Santos , Míriam Cristina Santos Amaral
{"title":"Ecotoxicological study of seven pharmaceutically active compounds: Mixture effects and environmental risk assessment","authors":"Carolina Rodrigues dos Santos , Guilherme Otávio Rosa e Silva , Camila de Figueiredo Valias , Lucilaine Valéria de Souza Santos , Míriam Cristina Santos Amaral","doi":"10.1016/j.aquatox.2024.107068","DOIUrl":null,"url":null,"abstract":"<div><p>Pharmaceutically active compounds (PhACs) have been detected in several aquatic compartments, which has been of environmental concern since PhACs can cause adverse effects on the aquatic ecosystem at low concentrations. Despite the variety of PhACs detected in surface water, ecotoxicological studies are non-existent for many of them, mainly regarding their mixture. In addition, water bodies can continuously receive the discharge of raw or treated wastewater with micropollutants. Thus, PhACs are subject to mixture and interactions, potentiating or reducing their toxicity. Therefore, the present study evaluated the toxicity on Aliivibrio fischeri of seven PhACs, which still needs to be explored in the literature. The effects were evaluated for the PhACs individually and for their binary and tertiary mixture. Also, the experimental effects were compared with the concentration addition (CA) and independent action (IA) models. Finally, an environmental risk assessment was carried out. Fenofibrate (FEN), loratadine (LOR), and ketoprofen (KET) were the most toxic, with EC<sub>50</sub> of 0.32 mg L<sup>-1</sup>, 6.15 mg L<sup>-1</sup> and 36.8 mg L<sup>-1</sup>, respectively. Synergistic effects were observed for FEN + LOR, KET + LOR, and KET + FEN + LOR, showing that the CA and IA may underestimate the toxicity. Environmental risks for KET concerning algae, and LOR e 17α-ethynylestradiol (EE2) for crustaceans and fish were high for several locations. Besides, high removals by wastewater treatment technologies are required to achieve the concentrations necessary for reducing KET and LOR risk quotients. Thus, this study contributed to a better understanding of the toxic interactions and environmental risks of PhACs.</p></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"275 ","pages":"Article 107068"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24002388","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pharmaceutically active compounds (PhACs) have been detected in several aquatic compartments, which has been of environmental concern since PhACs can cause adverse effects on the aquatic ecosystem at low concentrations. Despite the variety of PhACs detected in surface water, ecotoxicological studies are non-existent for many of them, mainly regarding their mixture. In addition, water bodies can continuously receive the discharge of raw or treated wastewater with micropollutants. Thus, PhACs are subject to mixture and interactions, potentiating or reducing their toxicity. Therefore, the present study evaluated the toxicity on Aliivibrio fischeri of seven PhACs, which still needs to be explored in the literature. The effects were evaluated for the PhACs individually and for their binary and tertiary mixture. Also, the experimental effects were compared with the concentration addition (CA) and independent action (IA) models. Finally, an environmental risk assessment was carried out. Fenofibrate (FEN), loratadine (LOR), and ketoprofen (KET) were the most toxic, with EC50 of 0.32 mg L-1, 6.15 mg L-1 and 36.8 mg L-1, respectively. Synergistic effects were observed for FEN + LOR, KET + LOR, and KET + FEN + LOR, showing that the CA and IA may underestimate the toxicity. Environmental risks for KET concerning algae, and LOR e 17α-ethynylestradiol (EE2) for crustaceans and fish were high for several locations. Besides, high removals by wastewater treatment technologies are required to achieve the concentrations necessary for reducing KET and LOR risk quotients. Thus, this study contributed to a better understanding of the toxic interactions and environmental risks of PhACs.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.