首页 > 最新文献

Aquatic Toxicology最新文献

英文 中文
Unraveling the immunotoxic effects of benzo[a]pyrene on Mytilus coruscus through histopathological, enzymatic, and transcriptomic analyses
IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-03-15 DOI: 10.1016/j.aquatox.2025.107326
Xiaoya Wang , Yaru Li , Kaida Xu , Qingyang Li , Shuang Yan , Yingying Ye , Pengzhi Qi , Hongfei Li
Benzo[a]pyrene (BaP) is a representative polycyclic aromatic hydrocarbon (PAH) known for its significant toxicity and environmental persistence, capable of causing mutations, deformities, and cancer in aquatic organisms. However, systematic studies on the effects of BaP exposure on histological damage, cell apoptosis, enzyme activity changes, and gene expression in Mytilus coruscus (M. coruscus), an important ecological indicator species, remain scarce. In this study, the biological effects of BaP on M. coruscus and the immunotoxic mechanisms following BaP exposure were evaluated using histological analysis, TUNEL assay, enzyme activity assays, and transcriptome sequencing. Our findings revealed notable histopathological changes due to BaP exposure, including hemocyte infiltration, atrophy, and deformation of digestive tubules in the digestive glands, as well as epithelial cell detachment and deformation in gills. Antioxidant enzyme activities (CAT, GSH-Px, SOD, T-AOC) varied significantly across tissues under BaP stress. Additionally, significant DNA fragmentation and increased apoptosis were observed in BaP-exposed groups compared to controls. Transcriptome analysis showed that after BaP exposure, nucleotide excision repair and innate immune response pathways were suppressed, while the metabolism of xenobiotics by cytochrome P450, glutathione biosynthesis, and apoptosis pathways were upregulated. These results elucidate the toxic mechanisms of BaP on M. coruscus and the immunotoxic responses of the mussels. This study enhances our understanding of how BaP and similar pollutants affect marine bivalves, providing valuable insights for environmental monitoring and pollutant management strategies.
{"title":"Unraveling the immunotoxic effects of benzo[a]pyrene on Mytilus coruscus through histopathological, enzymatic, and transcriptomic analyses","authors":"Xiaoya Wang ,&nbsp;Yaru Li ,&nbsp;Kaida Xu ,&nbsp;Qingyang Li ,&nbsp;Shuang Yan ,&nbsp;Yingying Ye ,&nbsp;Pengzhi Qi ,&nbsp;Hongfei Li","doi":"10.1016/j.aquatox.2025.107326","DOIUrl":"10.1016/j.aquatox.2025.107326","url":null,"abstract":"<div><div>Benzo[a]pyrene (BaP) is a representative polycyclic aromatic hydrocarbon (PAH) known for its significant toxicity and environmental persistence, capable of causing mutations, deformities, and cancer in aquatic organisms. However, systematic studies on the effects of BaP exposure on histological damage, cell apoptosis, enzyme activity changes, and gene expression in <em>Mytilus coruscus</em> (M<em>. coruscus</em>), an important ecological indicator species, remain scarce. In this study, the biological effects of BaP on M<em>. coruscus</em> and the immunotoxic mechanisms following BaP exposure were evaluated using histological analysis, TUNEL assay, enzyme activity assays, and transcriptome sequencing. Our findings revealed notable histopathological changes due to BaP exposure, including hemocyte infiltration, atrophy, and deformation of digestive tubules in the digestive glands, as well as epithelial cell detachment and deformation in gills. Antioxidant enzyme activities (CAT, GSH-Px, SOD, T-AOC) varied significantly across tissues under BaP stress. Additionally, significant DNA fragmentation and increased apoptosis were observed in BaP-exposed groups compared to controls. Transcriptome analysis showed that after BaP exposure, nucleotide excision repair and innate immune response pathways were suppressed, while the metabolism of xenobiotics by cytochrome P450, glutathione biosynthesis, and apoptosis pathways were upregulated. These results elucidate the toxic mechanisms of BaP on M<em>. coruscus</em> and the immunotoxic responses of the mussels. This study enhances our understanding of how BaP and similar pollutants affect marine bivalves, providing valuable insights for environmental monitoring and pollutant management strategies.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"282 ","pages":"Article 107326"},"PeriodicalIF":4.1,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toxicokinetic and liver proteomic study of the Chinese rare minnow (Gobiocypris rarus) exposed to F-53B
IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-03-14 DOI: 10.1016/j.aquatox.2025.107312
Hongbo Yang , Chan Xu , Jieyu Song , Jin Li , Chan Zhang , Chunli Teng , Kai Ma , Feng Xie
Perfluorooctane sulfonic acid (PFOS) and its alternative 6:2 chlorinated polyfluoroethersulfonate (6:2 Cl-PFESA, also known as F-53B), are frequently detected in a variety of environmental and human samples. These substances have been associated with hepatotoxic effects, including disorders in lipid metabolism and oxidative stress. However, the molecular mechanisms underlying the causal relationship between exposure to F-53B and hepatotoxicity remain inadequately understood. This study investigated the toxicokinetics and mechanisms of hepatotoxicity associated with prolonged exposure to F-53B in adult Chinese rare minnows. Specifically, 5-month-old adult Chinese rare minnow was exposed to concentrations of 10 μg/L and 200 μg/L of F-53B for a duration of 28 days for bioaccumulation assessment, followed by a 14-day period for metabolic evaluation. The findings indicated that the bioaccumulation of F-53B in the tissues was positively correlated with the exposure concentrations. The logarithmic bioconcentration factor (Log BCF28d) was determined to be 2.67 ± 0.02 for the low concentration group and 2.27 ± 0.01 for the high concentration group. The calculated half-lives (t1/2) were 18.50 ± 1.67 days and 21.38 ± 0.31 days for the respective concentration groups. F-53B protein exhibited a distinct tissue-specific distribution in adult Chinese rare minnow, with the following order of enrichment: Blood > Liver > Gonad > Gill > Intestine > Brain > Muscle. F-53B was primarily concentrated in the blood and liver, where the protein content was significantly higher. Exposure to F-53B for 28 days significantly elevated biochemical levels associated with lipid metabolism and increased the activities of the enzymes FAS, PPARα, and ACC in the liver. This exposure also resulted in impairment of the hepatic oxidative system in the Chinese rare minnow, with F-53B significantly reducing most of the measured markers related to oxidative stress (e.g., GSH, SOD, CAT, and MDA). Proteomic analysis indicated that the toxicity of F-53B regulates the expression of proteins across several functional classes. Based on the functional information of the differential proteins provided in UniProt and KEGG, they were categorized into five main categories: Cellular Processes, Environmental Information Processing, Genetic Information Processing, Metabolism, and Organismal Systems. This study indicate that F-53B is bioaccumulative and persistent in Chinese rare minnow, and can further induce oxidative stress and lipid metabolism disorders. Combined with proteomic research methods, the toxicological effects of F-53B on Chinese rare minnow can be better explained.
{"title":"Toxicokinetic and liver proteomic study of the Chinese rare minnow (Gobiocypris rarus) exposed to F-53B","authors":"Hongbo Yang ,&nbsp;Chan Xu ,&nbsp;Jieyu Song ,&nbsp;Jin Li ,&nbsp;Chan Zhang ,&nbsp;Chunli Teng ,&nbsp;Kai Ma ,&nbsp;Feng Xie","doi":"10.1016/j.aquatox.2025.107312","DOIUrl":"10.1016/j.aquatox.2025.107312","url":null,"abstract":"<div><div>Perfluorooctane sulfonic acid (PFOS) and its alternative 6:2 chlorinated polyfluoroethersulfonate (6:2 Cl-PFESA, also known as F-53B), are frequently detected in a variety of environmental and human samples. These substances have been associated with hepatotoxic effects, including disorders in lipid metabolism and oxidative stress. However, the molecular mechanisms underlying the causal relationship between exposure to F-53B and hepatotoxicity remain inadequately understood. This study investigated the toxicokinetics and mechanisms of hepatotoxicity associated with prolonged exposure to F-53B in adult Chinese rare minnows. Specifically, 5-month-old adult Chinese rare minnow was exposed to concentrations of 10 μg/L and 200 μg/L of F-53B for a duration of 28 days for bioaccumulation assessment, followed by a 14-day period for metabolic evaluation. The findings indicated that the bioaccumulation of F-53B in the tissues was positively correlated with the exposure concentrations. The logarithmic bioconcentration factor (Log BCF28d) was determined to be 2.67 ± 0.02 for the low concentration group and 2.27 ± 0.01 for the high concentration group. The calculated half-lives (t<sub>1/2</sub>) were 18.50 ± 1.67 days and 21.38 ± 0.31 days for the respective concentration groups. F-53B protein exhibited a distinct tissue-specific distribution in adult Chinese rare minnow, with the following order of enrichment: Blood &gt; Liver &gt; Gonad &gt; Gill &gt; Intestine &gt; Brain &gt; Muscle. F-53B was primarily concentrated in the blood and liver, where the protein content was significantly higher. Exposure to F-53B for 28 days significantly elevated biochemical levels associated with lipid metabolism and increased the activities of the enzymes FAS, PPARα, and ACC in the liver. This exposure also resulted in impairment of the hepatic oxidative system in the Chinese rare minnow, with F-53B significantly reducing most of the measured markers related to oxidative stress (e.g., GSH, SOD, CAT, and MDA). Proteomic analysis indicated that the toxicity of F-53B regulates the expression of proteins across several functional classes. Based on the functional information of the differential proteins provided in UniProt and KEGG, they were categorized into five main categories: Cellular Processes, Environmental Information Processing, Genetic Information Processing, Metabolism, and Organismal Systems. This study indicate that F-53B is bioaccumulative and persistent in Chinese rare minnow, and can further induce oxidative stress and lipid metabolism disorders. Combined with proteomic research methods, the toxicological effects of F-53B on Chinese rare minnow can be better explained.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"282 ","pages":"Article 107312"},"PeriodicalIF":4.1,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of the marine medaka AHRs and the comparison with those of Japanese medaka in response to dioxin and additional AHR ligands
IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-03-09 DOI: 10.1016/j.aquatox.2025.107323
Wanglong Zhang , Yanjiao Zong , Ruize Sun , Zhenhong Xue , Wenhui Wan , Anran Ren , Yongchao Ma , Wenjing Tian , Renjun Wang
The global water pollution now calls for precise risk assessment of chemicals, e.g., dioxins and the dioxin-like compounds (DLCs). The freshwater and marine medaka have been widely implemented in the toxicity testing, and perhaps give mechanistic information for comparative biology. The question that ‘will they report equal results due to their close phylogenetic relation’ has been raised, therefore, we explored their physiological and molecular responses to dioxin. As the mediator of the dioxin toxicity, the aryl hydrocarbon receptor (AHR) of marine medaka (Oryzias melastigma) has not been functionally characterized and might be species-specific. In terms of sensitivity to dioxin—2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the EC50 values of omeAHR1a (0.16±0.12 nM), omeAHR1b (2.96±2.96 nM), omeAHR2a (0.44±0.30 nM), and omeAHR2b (9.00±6.88 nM) exhibit marked variations. The omeAHR2a and omeAHR1a display heightened sensitivity compared to the freshwater Japanese medaka (Oryzias latipes) counterparts olaAHR2a and olaAHR1a, respectively. The results indicate the in vitro sensitivity of AHR among species can vary by one or two orders of magnitude. Further mechanistic investigations using additional ligands and computational modeling reveal that: 1) most of omeAHR2a, olaAHR2a, dreAHR2, and hsaAHR interact with ligands in the affinity order of TCDD > PCB126 > BNF > indole, mirroring their AHR transactivation potency, but the docking poses and dynamics can vary; 2) one AHR subform's high sensitivity to dioxin—TCDD may extend to DLCs but not to other types of ligands. Beyond the in vitro study, the preliminary in vivo LC50 data indicate that marine medaka (LC50: 1.64 ng/L (95 % CI: 1.05–2.55 ng/L)) has similar sensitivity, and possibly slightly greater (not statistically determined yet), to TCDD in comparison with Japanese medaka (LC50: 3.42 ng/L (95 % CI: 1.37–6.48 ng/L)).These insights underscore the difference of AHR biology among species even the close relative species, and point out the necessity for meticulous consideration when evaluating the toxicity of compounds and when extending predictive toxicity assessments to more species.
{"title":"Characterization of the marine medaka AHRs and the comparison with those of Japanese medaka in response to dioxin and additional AHR ligands","authors":"Wanglong Zhang ,&nbsp;Yanjiao Zong ,&nbsp;Ruize Sun ,&nbsp;Zhenhong Xue ,&nbsp;Wenhui Wan ,&nbsp;Anran Ren ,&nbsp;Yongchao Ma ,&nbsp;Wenjing Tian ,&nbsp;Renjun Wang","doi":"10.1016/j.aquatox.2025.107323","DOIUrl":"10.1016/j.aquatox.2025.107323","url":null,"abstract":"<div><div>The global water pollution now calls for precise risk assessment of chemicals, e.g., dioxins and the dioxin-like compounds (DLCs). The freshwater and marine medaka have been widely implemented in the toxicity testing, and perhaps give mechanistic information for comparative biology. The question that ‘will they report equal results due to their close phylogenetic relation’ has been raised, therefore, we explored their physiological and molecular responses to dioxin. As the mediator of the dioxin toxicity, the aryl hydrocarbon receptor (AHR) of marine medaka (<em>Oryzias melastigma</em>) has not been functionally characterized and might be species-specific. In terms of sensitivity to dioxin—2,3,7,8-tetrachlorodibenzo-<em>p</em>-dioxin (TCDD), the EC<sub>50</sub> values of omeAHR1a (0.16±0.12 nM), omeAHR1b (2.96±2.96 nM), omeAHR2a (0.44±0.30 nM), and omeAHR2b (9.00±6.88 nM) exhibit marked variations. The omeAHR2a and omeAHR1a display heightened sensitivity compared to the freshwater Japanese medaka (<em>Oryzias latipes</em>) counterparts olaAHR2a and olaAHR1a, respectively. The results indicate the in vitro sensitivity of AHR among species can vary by one or two orders of magnitude. Further mechanistic investigations using additional ligands and computational modeling reveal that: 1) most of omeAHR2a, olaAHR2a, dreAHR2, and hsaAHR interact with ligands in the affinity order of TCDD &gt; PCB126 &gt; BNF &gt; indole, mirroring their AHR transactivation potency, but the docking poses and dynamics can vary; 2) one AHR subform's high sensitivity to dioxin—TCDD may extend to DLCs but not to other types of ligands. Beyond the in vitro study, the preliminary in vivo LC<sub>50</sub> data indicate that marine medaka (LC<sub>50</sub>: 1.64 ng/L (95 % CI: 1.05–2.55 ng/L)) has similar sensitivity, and possibly slightly greater (not statistically determined yet), to TCDD in comparison with Japanese medaka (LC<sub>50</sub>: 3.42 ng/L (95 % CI: 1.37–6.48 ng/L)).These insights underscore the difference of AHR biology among species even the close relative species, and point out the necessity for meticulous consideration when evaluating the toxicity of compounds and when extending predictive toxicity assessments to more species.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"282 ","pages":"Article 107323"},"PeriodicalIF":4.1,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143642137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurotoxicity and aggressive behavior induced by anesthetic etomidate exposure in zebrafish: Insights from multi-omics and machine learning
IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-03-08 DOI: 10.1016/j.aquatox.2025.107321
Xuewei Li , Xuhui Lin , Zheng Zhang , Zile Zhuang , Yihan Li , Yuxuan Luo , Yupeng Pan , Qizhi Luo , Xuncai Chen
Etomidate (ETO), widely employed as a surgical anesthetic and more recently recognized as a drug of abuse, has been frequently detected in aquatic environment. However, the toxicity assessment of ETO is insufficient. Adult zebrafish were used to investigate toxicological effects of ETO. Four weeks ETO exposure could induced abnormal behaviors, including reduced anxiety, memory impairment, and heightened aggression. The increased aggression was quantitatively characterized using machine learning, which revealed significantly elevated instantaneous velocity and drastic changes in angular velocity. ETO was predominantly accumulated in the zebrafish brain, where it binds to GABA-A receptors, leading to a significant increase in GABA content. Furthermore, fluorescent staining of reactive oxygen species (ROS) in the brain revealed that ETO exposure significantly increased the oxidative stress level. This oxidative stress resulted in mitochondrial swelling, rupture, and damage to myelinated nerve fibers, ultimately causing cerebral injury in zebrafish. Multi-omics analysis further elucidated that ETO exposure down-regulated the MAPK signaling pathway, hyperactivated motor proteins, and induced metabolic disorders of lipids and amino acids. In summary, this study demonstrates that ETO induces neurotoxicity and behavioral alterations in zebrafish. These findings provide a critical insight into the mechanisms underlying ETO's neurotoxic effects and contribute to a more comprehensive understanding of its environmental and health risks.
{"title":"Neurotoxicity and aggressive behavior induced by anesthetic etomidate exposure in zebrafish: Insights from multi-omics and machine learning","authors":"Xuewei Li ,&nbsp;Xuhui Lin ,&nbsp;Zheng Zhang ,&nbsp;Zile Zhuang ,&nbsp;Yihan Li ,&nbsp;Yuxuan Luo ,&nbsp;Yupeng Pan ,&nbsp;Qizhi Luo ,&nbsp;Xuncai Chen","doi":"10.1016/j.aquatox.2025.107321","DOIUrl":"10.1016/j.aquatox.2025.107321","url":null,"abstract":"<div><div>Etomidate (ETO), widely employed as a surgical anesthetic and more recently recognized as a drug of abuse, has been frequently detected in aquatic environment. However, the toxicity assessment of ETO is insufficient. Adult zebrafish were used to investigate toxicological effects of ETO. Four weeks ETO exposure could induced abnormal behaviors, including reduced anxiety, memory impairment, and heightened aggression. The increased aggression was quantitatively characterized using machine learning, which revealed significantly elevated instantaneous velocity and drastic changes in angular velocity. ETO was predominantly accumulated in the zebrafish brain, where it binds to GABA-A receptors, leading to a significant increase in GABA content. Furthermore, fluorescent staining of reactive oxygen species (ROS) in the brain revealed that ETO exposure significantly increased the oxidative stress level. This oxidative stress resulted in mitochondrial swelling, rupture, and damage to myelinated nerve fibers, ultimately causing cerebral injury in zebrafish. Multi-omics analysis further elucidated that ETO exposure down-regulated the MAPK signaling pathway, hyperactivated motor proteins, and induced metabolic disorders of lipids and amino acids. In summary, this study demonstrates that ETO induces neurotoxicity and behavioral alterations in zebrafish. These findings provide a critical insight into the mechanisms underlying ETO's neurotoxic effects and contribute to a more comprehensive understanding of its environmental and health risks.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"282 ","pages":"Article 107321"},"PeriodicalIF":4.1,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143592418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Community-level effects of a neonicotinoid pesticide on the metabolism of freshwater microorganisms
IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-03-04 DOI: 10.1016/j.aquatox.2025.107311
Alessandra CERA , Sakie KODAMA , Leanne K. FAULKS , Hiroshi HAKOYAMA
This study provides an ecotoxicological assessment of the effects of the neonicotinoid dinotefuran on freshwater microorganisms. Epilithic biofilm was sampled from a small stream and exposed to dinotefuran for 14 days in Biolog EcoPlates. In general, we found that a concentration of 0.100 mg l-1 of dinotefuran induced the microorganism community to catabolise carbon sources faster. However, catabolic activity varied depending on the type of carbon source. Catabolism increased for Putrescine (+4673 %), Serine (+376 %), Galacturonic Acid (+206 %), Pyruvic Acid Methyl Ester (+177 %), and Gamma Amino Butyric Acid (+113 %); and decreased for Arginine (-59 %), Asparagine (-26 %), and Mannitol (-21 %). This is the first study in which EcoPlates have been used to investigate the effects of dinotefuran on freshwater epilithic biofilm at an environmentally realistic concentration.
{"title":"Community-level effects of a neonicotinoid pesticide on the metabolism of freshwater microorganisms","authors":"Alessandra CERA ,&nbsp;Sakie KODAMA ,&nbsp;Leanne K. FAULKS ,&nbsp;Hiroshi HAKOYAMA","doi":"10.1016/j.aquatox.2025.107311","DOIUrl":"10.1016/j.aquatox.2025.107311","url":null,"abstract":"<div><div>This study provides an ecotoxicological assessment of the effects of the neonicotinoid dinotefuran on freshwater microorganisms. Epilithic biofilm was sampled from a small stream and exposed to dinotefuran for 14 days in Biolog EcoPlates. In general, we found that a concentration of 0.100 mg <span>l</span><sup>-1</sup> of dinotefuran induced the microorganism community to catabolise carbon sources faster. However, catabolic activity varied depending on the type of carbon source. Catabolism increased for Putrescine (+4673 %), Serine (+376 %), Galacturonic Acid (+206 %), Pyruvic Acid Methyl Ester (+177 %), and Gamma Amino Butyric Acid (+113 %); and decreased for Arginine (-59 %), Asparagine (-26 %), and Mannitol (-21 %). This is the first study in which EcoPlates have been used to investigate the effects of dinotefuran on freshwater epilithic biofilm at an environmentally realistic concentration.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"282 ","pages":"Article 107311"},"PeriodicalIF":4.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143580125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toxicity of microplastics polystyrene to freshwater planarians and the alleviative effects of anthocyanins
IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-03-04 DOI: 10.1016/j.aquatox.2025.107310
He-Cai Zhang, Xiao-Qing Yang, Cai-Hui Wang, Chang-Yang Shang, Chang-Ying Shi, Guang-Wen Chen, De-Zeng Liu
It is impossible to overlook the effects of microplastics (MPs) on aquatic organisms as they continuously accumulate in water environment. Freshwater planarians, which exist in the benthic zone of water bodies and come into contact with the deposited MPs particles, provide a highly representative model for studying the effects of MPs on aquatic organisms. Anthocyanins (ANTs) have gained significant popularity in recent years for their diverse health benefits. In the current study, the median lethal concentration (LC50) of polystyrene (PS) to planarian Dugesia japonica was determined for the first time. Based on this, multiple toxic effects of single PS and PS in combination with ANTs on planarians were explored. The results showed that PS exposure disrupted the redox homeostasis and induced oxidative damage in planarians. Also, PS stress affected the neuromorphology, aggravated cell apoptosis in planarians probably by altering neural gene expressions as well as promoting the expression of apoptosis-related genes while inhibiting stem cell marker genes. In addition, the results also suggested that co-exposure of ANTs could effectively alleviate the toxicity of PS on planarians. Particularly, long-term environmentally relevant concentration PS exposure exhibited a higher propensity for inducing toxicity on planarians than short-term high concentration acute exposure, indicating that the harm of environmental MPs to humans and wildlife exposed to them should not be underestimated. Therefore, considering the recently rising and rapid development of ecotoxicomics, more in-depth research on the toxicity mechanism of environmentally relevant concentration PS-MPs to freshwater planarians from multi-omics levels will be our future work.
{"title":"Toxicity of microplastics polystyrene to freshwater planarians and the alleviative effects of anthocyanins","authors":"He-Cai Zhang,&nbsp;Xiao-Qing Yang,&nbsp;Cai-Hui Wang,&nbsp;Chang-Yang Shang,&nbsp;Chang-Ying Shi,&nbsp;Guang-Wen Chen,&nbsp;De-Zeng Liu","doi":"10.1016/j.aquatox.2025.107310","DOIUrl":"10.1016/j.aquatox.2025.107310","url":null,"abstract":"<div><div>It is impossible to overlook the effects of microplastics (MPs) on aquatic organisms as they continuously accumulate in water environment. Freshwater planarians, which exist in the benthic zone of water bodies and come into contact with the deposited MPs particles, provide a highly representative model for studying the effects of MPs on aquatic organisms. Anthocyanins (ANTs) have gained significant popularity in recent years for their diverse health benefits. In the current study, the median lethal concentration (LC<sub>50</sub>) of polystyrene (PS) to planarian <em>Dugesia japonica</em> was determined for the first time. Based on this, multiple toxic effects of single PS and PS in combination with ANTs on planarians were explored. The results showed that PS exposure disrupted the redox homeostasis and induced oxidative damage in planarians. Also, PS stress affected the neuromorphology, aggravated cell apoptosis in planarians probably by altering neural gene expressions as well as promoting the expression of apoptosis-related genes while inhibiting stem cell marker genes. In addition, the results also suggested that co-exposure of ANTs could effectively alleviate the toxicity of PS on planarians. Particularly, long-term environmentally relevant concentration PS exposure exhibited a higher propensity for inducing toxicity on planarians than short-term high concentration acute exposure, indicating that the harm of environmental MPs to humans and wildlife exposed to them should not be underestimated. Therefore, considering the recently rising and rapid development of ecotoxicomics, more in-depth research on the toxicity mechanism of environmentally relevant concentration PS-MPs to freshwater planarians from multi-omics levels will be our future work.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"282 ","pages":"Article 107310"},"PeriodicalIF":4.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143580123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Individual and combined toxicity of personal care products and pharmaceuticals at environmentally relevant concentrations due to chronic exposure of the freshwater microcrustacean Daphnia magna
IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-03-03 DOI: 10.1016/j.aquatox.2025.107307
Alana Rafaela Batista Leite , Silvia Pedroso Melegari , William Gerson Matias
Personal care products and pharmaceuticals, namely sodium diclofenac (DCF), octocrylene (OCT), and sodium dodecyl sulfate (SDS), are relevant chemical products classified as contaminants of emerging concern (CECs). They can enter aquatic ecosystems from various anthropogenic sources. This study examined the acute and chronic toxic effects of exposure to these substances, individually and in binary mixtures (OCT + SDS, SDS + DCF, DCF + SDS). Chronic effects were evaluated at environmentally relevant concentrations. To evaluate the mixtures, the Abbott method was used to predict acute toxicity using the inhibition ratio value, while for chronic effects, the concentration addition (CA) and independent action (IA) models were used for predictive assessment. According to EC5048h values, the toxicity levels to D. magna were OCT > SDS > DCF. When exposed to binary mixtures, these compounds predominantly exhibited antagonistic interaction for acute effects. Regarding chronic effects, there were no observed effects at the environmentally relevant concentrations tested for individual and mixed exposure compared to the control. The locomotion parameter exhibited a difference in dispersion with increasing chemical concentration. These results can improve understanding of the damage produced by exposure to mixtures of different CECs.
{"title":"Individual and combined toxicity of personal care products and pharmaceuticals at environmentally relevant concentrations due to chronic exposure of the freshwater microcrustacean Daphnia magna","authors":"Alana Rafaela Batista Leite ,&nbsp;Silvia Pedroso Melegari ,&nbsp;William Gerson Matias","doi":"10.1016/j.aquatox.2025.107307","DOIUrl":"10.1016/j.aquatox.2025.107307","url":null,"abstract":"<div><div>Personal care products and pharmaceuticals, namely sodium diclofenac (DCF), octocrylene (OCT), and sodium dodecyl sulfate (SDS), are relevant chemical products classified as contaminants of emerging concern (CECs). They can enter aquatic ecosystems from various anthropogenic sources. This study examined the acute and chronic toxic effects of exposure to these substances, individually and in binary mixtures (OCT + SDS, SDS + DCF, DCF + SDS). Chronic effects were evaluated at environmentally relevant concentrations. To evaluate the mixtures, the Abbott method was used to predict acute toxicity using the inhibition ratio value, while for chronic effects, the concentration addition (CA) and independent action (IA) models were used for predictive assessment. According to EC50<sub>48h</sub> values, the toxicity levels to <em>D. magna</em> were OCT &gt; SDS &gt; DCF. When exposed to binary mixtures, these compounds predominantly exhibited antagonistic interaction for acute effects. Regarding chronic effects, there were no observed effects at the environmentally relevant concentrations tested for individual and mixed exposure compared to the control. The locomotion parameter exhibited a difference in dispersion with increasing chemical concentration. These results can improve understanding of the damage produced by exposure to mixtures of different CECs.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"282 ","pages":"Article 107307"},"PeriodicalIF":4.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143580126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunotoxicity of thyroid hormone system disrupting compounds in fish
IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-03-03 DOI: 10.1016/j.aquatox.2025.107309
Florentina Hasani , Lisa Baumann
Endocrine disrupting compounds (EDCs) are among the most studied environmental pollutants in the field of (eco)toxicology, and different fish species are commonly used as model organisms, especially for studying reprotoxic effects. Despite the scientific and regulatory importance of EDCs, little attention has been given to their immunotoxic effects in fish. Basic knowledge and test systems for immune-related outcomes in fish are limited. For example, while the impact of estrogenic EDCs on the fish immune system has raised some attention in the last decade, thyroid hormone system disrupting compounds (THSDCs) and their impact on the fish immune system are less well studied. Thus, this literature review is aimed at describing the immunomodulatory roles of thyroid hormones (THs), as well as summarizing the existing research on the immunotoxicity of THSDCs in fish. A simplified potential adverse outcome pathway (AOP) was created, explaining the key events between THSD and lowered survival of fish experiencing pathogen infections along with chemical exposure. This AOP demonstrates that THSDCs can alter immune system functioning on a molecular, cellular, and organism level and, therefore, lead to reduced survival by lowering pathogen resistance of fish. However, available data were mainly limited to molecular analyses of immune-related biomarkers and included only few studies that conducted experiments demonstrating immunotoxic effects at organism level that can inform about population-relevant outcomes. Our putatively developed and simplified AOP can support the incorporation of immune-related endpoints in EDC testing guidelines and aid the development of risk assessments for THSDCs for human and environmental health.
{"title":"Immunotoxicity of thyroid hormone system disrupting compounds in fish","authors":"Florentina Hasani ,&nbsp;Lisa Baumann","doi":"10.1016/j.aquatox.2025.107309","DOIUrl":"10.1016/j.aquatox.2025.107309","url":null,"abstract":"<div><div>Endocrine disrupting compounds (EDCs) are among the most studied environmental pollutants in the field of (eco)toxicology, and different fish species are commonly used as model organisms, especially for studying reprotoxic effects. Despite the scientific and regulatory importance of EDCs, little attention has been given to their immunotoxic effects in fish. Basic knowledge and test systems for immune-related outcomes in fish are limited. For example, while the impact of estrogenic EDCs on the fish immune system has raised some attention in the last decade, thyroid hormone system disrupting compounds (THSDCs) and their impact on the fish immune system are less well studied. Thus, this literature review is aimed at describing the immunomodulatory roles of thyroid hormones (THs), as well as summarizing the existing research on the immunotoxicity of THSDCs in fish. A simplified potential adverse outcome pathway (AOP) was created, explaining the key events between THSD and lowered survival of fish experiencing pathogen infections along with chemical exposure. This AOP demonstrates that THSDCs can alter immune system functioning on a molecular, cellular, and organism level and, therefore, lead to reduced survival by lowering pathogen resistance of fish. However, available data were mainly limited to molecular analyses of immune-related biomarkers and included only few studies that conducted experiments demonstrating immunotoxic effects at organism level that can inform about population-relevant outcomes. Our putatively developed and simplified AOP can support the incorporation of immune-related endpoints in EDC testing guidelines and aid the development of risk assessments for THSDCs for human and environmental health.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"282 ","pages":"Article 107309"},"PeriodicalIF":4.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143549367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immune response to polystyrene microplastics: Regulation of inflammatory response via the ROS-driven NF-κB pathway in zebrafish (Danio rerio)
IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-03-03 DOI: 10.1016/j.aquatox.2025.107308
Jincheng Pei , Shannan Chen , Qingxia Ke , Anning Pang , Mengmeng Niu , Nan Li , Jiayi Li , Zhi Wang , Hongjuan Wu , Pin Nie
There is increasing apprehension regarding the rising prevalence of microplastics (MPs) in aquatic ecosystems. Although MPs cause toxicological effect on fish via diverse pathways, the precise immunotoxicological mechanism is yet to be fully understood. Utilizing zebrafish in early developmental stages and zebrafish embryonic fibroblast (ZF4) as models, this study delved into the immune response elicited by polystyrene MPs (PS-MPs). It was observed that larvae predominantly accumulate 3 μm PS-MPs in their intestines through ingestion, leading to notable changes in locomotor behavior and histopathological alterations. Further investigation revealed that short-term exposure to PS-MPs triggers oxidative stress (OS) and inflammation in zebrafish. This is evidenced by the upregulation of OS and inflammation-related genes, increased levels of reactive oxygen species (ROS), malonaldehyde (MDA), and inflammatory cytokines, altered activities of antioxidant enzymes, along with induced recruitment of leukocyte in larvae. Cellular assays confirmed that PS-MPs elevate intracellular ROS in ZF4 cells and enhance the nuclear translocation of NF-κB P65. Notably, the activation of NF-κB and the upsurge in inflammatory cytokines can be mitigated by inhibiting ROS. This research highlights the significance of the ROS-triggered NF-κB signaling cascade in PS-MPs-mediated inflammation within zebrafish, illuminating the possible processes that underlie the innate immune system of fish toxicity caused by MPs.
{"title":"Immune response to polystyrene microplastics: Regulation of inflammatory response via the ROS-driven NF-κB pathway in zebrafish (Danio rerio)","authors":"Jincheng Pei ,&nbsp;Shannan Chen ,&nbsp;Qingxia Ke ,&nbsp;Anning Pang ,&nbsp;Mengmeng Niu ,&nbsp;Nan Li ,&nbsp;Jiayi Li ,&nbsp;Zhi Wang ,&nbsp;Hongjuan Wu ,&nbsp;Pin Nie","doi":"10.1016/j.aquatox.2025.107308","DOIUrl":"10.1016/j.aquatox.2025.107308","url":null,"abstract":"<div><div>There is increasing apprehension regarding the rising prevalence of microplastics (MPs) in aquatic ecosystems. Although MPs cause toxicological effect on fish via diverse pathways, the precise immunotoxicological mechanism is yet to be fully understood. Utilizing zebrafish in early developmental stages and zebrafish embryonic fibroblast (ZF4) as models, this study delved into the immune response elicited by polystyrene MPs (PS-MPs). It was observed that larvae predominantly accumulate 3 μm PS-MPs in their intestines through ingestion, leading to notable changes in locomotor behavior and histopathological alterations. Further investigation revealed that short-term exposure to PS-MPs triggers oxidative stress (OS) and inflammation in zebrafish. This is evidenced by the upregulation of OS and inflammation-related genes, increased levels of reactive oxygen species (ROS), malonaldehyde (MDA), and inflammatory cytokines, altered activities of antioxidant enzymes, along with induced recruitment of leukocyte in larvae. Cellular assays confirmed that PS-MPs elevate intracellular ROS in ZF4 cells and enhance the nuclear translocation of NF-κB P65. Notably, the activation of NF-κB and the upsurge in inflammatory cytokines can be mitigated by inhibiting ROS. This research highlights the significance of the ROS-triggered NF-κB signaling cascade in PS-MPs-mediated inflammation within zebrafish, illuminating the possible processes that underlie the innate immune system of fish toxicity caused by MPs.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"282 ","pages":"Article 107308"},"PeriodicalIF":4.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143580124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular basis for the effects of SSRIs in non-target aquatic invertebrates: A case study with Mytilus galloprovincialis early larvae
IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-03-01 DOI: 10.1016/j.aquatox.2025.107306
Beatrice Risso , Angelica Miglioli , Teresa Balbi , Rémi Dumollard , Laura Canesi
Selective Serotonin Reuptake Inhibitors (SSRIs) are among the most prescribed antidepressants, whose increasing consumption results in a continuous discharge into aquatic compartments, where they are detected at ng-µg/L levels. Whilst designed to modulate endogenous levels of circulating Serotonin (5-HT) in humans by selectively interfering with serotonin reuptake transporters (SERTs), SSRIs have been shown to induce a variety of adverse effects in non-target species, including aquatic invertebrates.
In bivalve molluscs, adult exposure to environmental concentrations of SSRIs results in tissue bioaccumulation and induces different biomarker responses. However, the effects were not related to the mechanisms of action of SSRIs, due to poor knowledge of their direct molecular targets, SERT in particular. Much less information is available in embryo-larval stages.
In this work, the effects of different SSRIs (Fluoxetine, Citalopram, Sertraline, 1–100 µg/L) were compared in the model of Mytilus galloprovincialis embryo-larval development. SSRIs showed small or no effects on normal larval development at 48 h post fertilization (hpf). The possible direct or indirect molecular targets of SSRIs were thus investigated in mussel larvae. Two conserved SERT sequences, SERT1-like and SERT2-like, were identified in M. galloprovincialis genome: their developmental expression showed increased transcription only from 44 and 20 hpf, respectively. A much higher and earlier expression (from 12 hpf) was observed for TPH (Tryptophan Hydroxylase), the rate limiting enzyme in 5-HT synthesis. Double in situ Hybridization Chain Reaction (HCR) showed partial colocalisation of TPH with SERT1-like and SERT2-like transcripts in 48 hpf larvae. At this stage, SSRIs induced a small but significant decrease in the number of TPH-positive cells. Finally, 19 Nose Resistance to Fluoxetine (nrf) sequences were identified, that were highly expressed across all early stages (0–48 hpf). At 48 hpf, nrf expression was associated with the digestive system. The results represent the first data on the establishment of the serotonergic system in mussel early larvae, representing the molecular basis for understanding the effects of SSRIs and their mechanisms of action in model non-target marine invertebrates.
{"title":"Molecular basis for the effects of SSRIs in non-target aquatic invertebrates: A case study with Mytilus galloprovincialis early larvae","authors":"Beatrice Risso ,&nbsp;Angelica Miglioli ,&nbsp;Teresa Balbi ,&nbsp;Rémi Dumollard ,&nbsp;Laura Canesi","doi":"10.1016/j.aquatox.2025.107306","DOIUrl":"10.1016/j.aquatox.2025.107306","url":null,"abstract":"<div><div>Selective Serotonin Reuptake Inhibitors (SSRIs) are among the most prescribed antidepressants, whose increasing consumption results in a continuous discharge into aquatic compartments, where they are detected at ng-µg/L levels. Whilst designed to modulate endogenous levels of circulating Serotonin (5-HT) in humans by selectively interfering with serotonin reuptake transporters (SERTs), SSRIs have been shown to induce a variety of adverse effects in non-target species, including aquatic invertebrates.</div><div>In bivalve molluscs, adult exposure to environmental concentrations of SSRIs results in tissue bioaccumulation and induces different biomarker responses. However, the effects were not related to the mechanisms of action of SSRIs, due to poor knowledge of their direct molecular targets, SERT in particular. Much less information is available in embryo-larval stages.</div><div>In this work, the effects of different SSRIs (Fluoxetine, Citalopram, Sertraline, 1–100 µg/L) were compared in the model of <em>Mytilus galloprovincialis</em> embryo-larval development. SSRIs showed small or no effects on normal larval development at 48 h post fertilization (hpf). The possible direct or indirect molecular targets of SSRIs were thus investigated in mussel larvae. Two conserved SERT sequences, SERT1-<em>like</em> and SERT2-<em>like</em>, were identified in <em>M. galloprovincialis</em> genome: their developmental expression showed increased transcription only from 44 and 20 hpf, respectively. A much higher and earlier expression (from 12 hpf) was observed for TPH (Tryptophan Hydroxylase), the rate limiting enzyme in 5-HT synthesis. Double <em>in situ</em> Hybridization Chain Reaction (HCR) showed partial colocalisation of TPH with SERT1-<em>like</em> and SERT2-<em>like</em> transcripts in 48 hpf larvae. At this stage, SSRIs induced a small but significant decrease in the number of TPH-positive cells. Finally, 19 Nose Resistance to Fluoxetine (nrf) sequences were identified, that were highly expressed across all early stages (0–48 hpf). At 48 hpf, nrf expression was associated with the digestive system. The results represent the first data on the establishment of the serotonergic system in mussel early larvae, representing the molecular basis for understanding the effects of SSRIs and their mechanisms of action in model non-target marine invertebrates.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"282 ","pages":"Article 107306"},"PeriodicalIF":4.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143580127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Aquatic Toxicology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1