{"title":"The trajectory of vesicular proteomic signatures from HBV-HCC by chitosan-magnetic bead-based separation and DIA-proteomic analysis","authors":"Lin Cao, Yue Zhou, Shuai Lin, Chunyan Yang, Zixuan Guan, Xiaofan Li, Shujie Yang, Tong Gao, Jiazhen Zhao, Ning Fan, Yanan Song, Dongmin Li, Xiang Li, Zhuo Li, Feng Guan, Zengqi Tan","doi":"10.1002/jev2.12499","DOIUrl":null,"url":null,"abstract":"<p>Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer often associated with chronic hepatitis B virus infection (CHB) and liver cirrhosis (LC), underscoring the critical need for biomarker discovery to improve patient outcomes. Emerging as a promising avenue for biomarker development, proteomic technology leveraging liquid biopsy from small extracellular vesicles (sEV) offers new insights. Here, we evaluated various methods for sEV isolation and identified polysaccharide chitosan (CS) as an optimal approach. Subsequently, we employed optimized CS-based magnetic beads (Mag-CS) for sEV separation from serum samples of healthy controls, CHB, LC, and HBV-HCC patients. Leveraging data-independent acquisition mass spectrometry coupled with machine learning, we uncovered potential vesicular protein biomarker signatures (KNG1, F11, KLKB1, CAPNS1, CDH1, CPN2, NME2) capable of distinguishing HBV-HCC from CHB, LC, and non-HCC conditions. Collectively, our findings highlight the utility of Mag-CS-based sEV isolation for identifying early detection biomarkers in HBV-HCC.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 9","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12499","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.12499","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer often associated with chronic hepatitis B virus infection (CHB) and liver cirrhosis (LC), underscoring the critical need for biomarker discovery to improve patient outcomes. Emerging as a promising avenue for biomarker development, proteomic technology leveraging liquid biopsy from small extracellular vesicles (sEV) offers new insights. Here, we evaluated various methods for sEV isolation and identified polysaccharide chitosan (CS) as an optimal approach. Subsequently, we employed optimized CS-based magnetic beads (Mag-CS) for sEV separation from serum samples of healthy controls, CHB, LC, and HBV-HCC patients. Leveraging data-independent acquisition mass spectrometry coupled with machine learning, we uncovered potential vesicular protein biomarker signatures (KNG1, F11, KLKB1, CAPNS1, CDH1, CPN2, NME2) capable of distinguishing HBV-HCC from CHB, LC, and non-HCC conditions. Collectively, our findings highlight the utility of Mag-CS-based sEV isolation for identifying early detection biomarkers in HBV-HCC.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.