{"title":"Acyl-CoA Synthetase Long-Chain Isoenzymes in Kidney Diseases: Mechanistic Insights and Therapeutic Implications","authors":"Swati Mishra, Vishwadeep Shelke, Anil Bhanudas Gaikwad","doi":"10.1002/cbf.4114","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Long-chain acyl-CoA synthetases (ACSLs) are pivotal enzymes in fatty acid metabolism, essential for maintaining cellular homeostasis and energy production. Recent research has uncovered their significant involvement in the pathophysiology of various kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), and renal cell carcinoma (RCC). While ACSL1, ACSL3, ACSL4, and ACSL5 have been extensively studied for their roles in processes such as ferroptosis, lipid peroxidation, renal fibrosis, epithelial-mesenchymal transition, and tumor progression, the role of ACSL6 in kidney diseases remain largely unexplored. Notably, these isoenzymes exhibit distinct functions in different kidney diseases. Therefore, to provide a comprehensive understanding of their involvement, this review highlights the molecular pathways influenced by ACSLs and their roles in modulating cell death, inflammation, and fibrosis during kidney disease progression. By examining these mechanisms in detail, this review underscores the potential of ACSLs as biomarkers and therapeutic targets, advocating for further research to elucidate the precise roles of individual ACSL isoenzymes in kidney disease progression. Understanding these mechanisms opens new avenues for developing targeted interventions and improving therapeutic outcomes for patients with kidney diseases.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"42 7","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.4114","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Long-chain acyl-CoA synthetases (ACSLs) are pivotal enzymes in fatty acid metabolism, essential for maintaining cellular homeostasis and energy production. Recent research has uncovered their significant involvement in the pathophysiology of various kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), and renal cell carcinoma (RCC). While ACSL1, ACSL3, ACSL4, and ACSL5 have been extensively studied for their roles in processes such as ferroptosis, lipid peroxidation, renal fibrosis, epithelial-mesenchymal transition, and tumor progression, the role of ACSL6 in kidney diseases remain largely unexplored. Notably, these isoenzymes exhibit distinct functions in different kidney diseases. Therefore, to provide a comprehensive understanding of their involvement, this review highlights the molecular pathways influenced by ACSLs and their roles in modulating cell death, inflammation, and fibrosis during kidney disease progression. By examining these mechanisms in detail, this review underscores the potential of ACSLs as biomarkers and therapeutic targets, advocating for further research to elucidate the precise roles of individual ACSL isoenzymes in kidney disease progression. Understanding these mechanisms opens new avenues for developing targeted interventions and improving therapeutic outcomes for patients with kidney diseases.
期刊介绍:
Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease.
The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.