{"title":"The Mechanisms and Implications of Cardiolipin in the Regulation of Cell Death","authors":"Zhou-zhou Li, Han-xi Xiao, Jian-jie Hu, Wei Xie, Zu-xiu Wang, Yong-ping Pan, Xu-huan Li, Xue-feng Yu","doi":"10.1002/cbf.70066","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cardiolipin (CL), an exclusive phospholipid, is predominantly found within the confines of the inner mitochondrial membrane, playing an indispensable role in the sustenance of mitochondrial operations and the regulation of cellular energy metabolism. The influence of CL on the pathways of cell death has garnered significant interest in recent scholarly discourse. This review delves into the multifaceted roles of CL across various modes of cell demise, encompassing apoptosis, autophagy, pyroptosis, ferroptosis, necrosis, and necroptosis. The discussion extends to the examination of CL's implications in a clinical context, particularly concerning cardiovascular maladies, neurological degeneration, and oncological conditions. Through an integrative analysis of contemporary research findings, the aim is to elucidate the intricate dynamics of CL's involvement in cell death phenomena. While acknowledging the inherent limitations and the hurdles faced by current research endeavors, the therapeutic potential of CL as a modulator of cell death pathways is nonetheless encouraging. Forthcoming investigations must surmount these obstacles, thereby uncovering the nuanced mechanisms and impacts of CL in the realm of cell death and associated pathologies, potentially paving the way for innovative clinical intervention strategies.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"43 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.70066","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiolipin (CL), an exclusive phospholipid, is predominantly found within the confines of the inner mitochondrial membrane, playing an indispensable role in the sustenance of mitochondrial operations and the regulation of cellular energy metabolism. The influence of CL on the pathways of cell death has garnered significant interest in recent scholarly discourse. This review delves into the multifaceted roles of CL across various modes of cell demise, encompassing apoptosis, autophagy, pyroptosis, ferroptosis, necrosis, and necroptosis. The discussion extends to the examination of CL's implications in a clinical context, particularly concerning cardiovascular maladies, neurological degeneration, and oncological conditions. Through an integrative analysis of contemporary research findings, the aim is to elucidate the intricate dynamics of CL's involvement in cell death phenomena. While acknowledging the inherent limitations and the hurdles faced by current research endeavors, the therapeutic potential of CL as a modulator of cell death pathways is nonetheless encouraging. Forthcoming investigations must surmount these obstacles, thereby uncovering the nuanced mechanisms and impacts of CL in the realm of cell death and associated pathologies, potentially paving the way for innovative clinical intervention strategies.
期刊介绍:
Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease.
The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.