Grain boundaries are Brownian ratchets

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Pub Date : 2024-08-29 DOI:10.1126/science.adp1516
Caihao Qiu, Maik Punke, Yuan Tian, Ying Han, Siqi Wang, Yishi Su, Marco Salvalaglio, Xiaoqing Pan, David J. Srolovitz, Jian Han
{"title":"Grain boundaries are Brownian ratchets","authors":"Caihao Qiu,&nbsp;Maik Punke,&nbsp;Yuan Tian,&nbsp;Ying Han,&nbsp;Siqi Wang,&nbsp;Yishi Su,&nbsp;Marco Salvalaglio,&nbsp;Xiaoqing Pan,&nbsp;David J. Srolovitz,&nbsp;Jian Han","doi":"10.1126/science.adp1516","DOIUrl":null,"url":null,"abstract":"<div >We demonstrate that grain boundaries (GBs) behave as Brownian ratchets, exhibiting direction-dependent mobilities and unidirectional motion under oscillatory driving forces or cyclic thermal annealing. We observed these phenomena for nearly all nonsymmetric GBs but not for symmetric ones. Our observations build on molecular dynamics and phase-field crystal simulations for a wide range of GB types and driving forces in both bicrystal and polycrystalline microstructures. We corroborate these simulation results through in situ experimental observations. We analyze these results with a Markov chain model and explore the implications of GB ratchet behavior for materials processing and microstructure tailoring.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":null,"pages":null},"PeriodicalIF":44.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adp1516","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate that grain boundaries (GBs) behave as Brownian ratchets, exhibiting direction-dependent mobilities and unidirectional motion under oscillatory driving forces or cyclic thermal annealing. We observed these phenomena for nearly all nonsymmetric GBs but not for symmetric ones. Our observations build on molecular dynamics and phase-field crystal simulations for a wide range of GB types and driving forces in both bicrystal and polycrystalline microstructures. We corroborate these simulation results through in situ experimental observations. We analyze these results with a Markov chain model and explore the implications of GB ratchet behavior for materials processing and microstructure tailoring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晶界是布朗棘轮
我们证明了晶界(GBs)的行为就像布朗棘轮,在振荡驱动力或循环热退火作用下表现出方向依赖性迁移率和单向运动。我们观察到几乎所有非对称 GB 都存在这些现象,但对称 GB 却不存在。我们的观察建立在分子动力学和相场晶体模拟的基础上,模拟了双晶和多晶微结构中的多种 GB 类型和驱动力。我们通过现场实验观察证实了这些模拟结果。我们用马尔科夫链模型分析了这些结果,并探讨了 GB 棘轮行为对材料加工和微结构定制的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
期刊最新文献
Durably reducing conspiracy beliefs through dialogues with AI Microbial dietary preference and interactions affect the export of lipids to the deep ocean Autoregulated splicing of TRA2β programs T cell fate in response to antigen-receptor stimulation Transcripts of repetitive DNA elements signal to block phagocytosis of hematopoietic stem cells Exploiting the mechanical effects of ultrasound for noninvasive therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1