{"title":"Deciphering the drivers of plant-soil feedbacks and their context-dependence: A meta-analysis","authors":"Cai Cheng, Michael J. Gundale, Bo Li, Jihua Wu","doi":"10.1007/s11104-024-06922-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Plant-soil feedbacks (PSFs) play an important role in mediating plant species coexistence, community dynamics and ecosystem functioning. Soil biota (e.g. mutualists, pathogens), nutrient availability and secondary chemicals can drive the strength and direction of PSFs, but the variations and context-dependence of their effects remain unclear.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We used a phylogenetically controlled meta-analysis of 57 PSF studies across 166 plant species to explore whether and how these drivers affect individual PSFs (the performance of a species on conspecific versus heterospecific soils) and pairwise PSFs (indicating whether feedbacks promote stable or unstable species coexistence) under various intrinsic, environmental and experimental contexts.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Mutualists led to stronger positive individual and pairwise PSFs across various intrinsic and external contexts. However, PSFs became more negative when whole biota was present, with stronger negative effects on native species compared to exotic species and the most negative effects on plants experiencing interspecific competition. Manipulations of pathogens, nutrient availability and secondary chemicals had overall minimal influence on both types of PSFs, but the effect of nutrient availability on pairwise PSFs increased with increasing phylogenetic distance between species.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Our study suggests that soil biota is an important driver of PSFs and that plant origin and competitive context should be considered when predicting the role of soil biota in driving PSFs. Finally, we propose several directions for the next generation of PSF experiments towards a better understanding of the relative importance and interactions of different PSF drivers.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-06922-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims
Plant-soil feedbacks (PSFs) play an important role in mediating plant species coexistence, community dynamics and ecosystem functioning. Soil biota (e.g. mutualists, pathogens), nutrient availability and secondary chemicals can drive the strength and direction of PSFs, but the variations and context-dependence of their effects remain unclear.
Methods
We used a phylogenetically controlled meta-analysis of 57 PSF studies across 166 plant species to explore whether and how these drivers affect individual PSFs (the performance of a species on conspecific versus heterospecific soils) and pairwise PSFs (indicating whether feedbacks promote stable or unstable species coexistence) under various intrinsic, environmental and experimental contexts.
Results
Mutualists led to stronger positive individual and pairwise PSFs across various intrinsic and external contexts. However, PSFs became more negative when whole biota was present, with stronger negative effects on native species compared to exotic species and the most negative effects on plants experiencing interspecific competition. Manipulations of pathogens, nutrient availability and secondary chemicals had overall minimal influence on both types of PSFs, but the effect of nutrient availability on pairwise PSFs increased with increasing phylogenetic distance between species.
Conclusion
Our study suggests that soil biota is an important driver of PSFs and that plant origin and competitive context should be considered when predicting the role of soil biota in driving PSFs. Finally, we propose several directions for the next generation of PSF experiments towards a better understanding of the relative importance and interactions of different PSF drivers.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.