Chunrong Mi, Xingzhi Han, Zhongwen Jiang, Zhigao Zeng, Weiguo Du, Baojun Sun
{"title":"Precipitation and temperature primarily determine the reptile distributions in China","authors":"Chunrong Mi, Xingzhi Han, Zhongwen Jiang, Zhigao Zeng, Weiguo Du, Baojun Sun","doi":"10.1111/ecog.07005","DOIUrl":null,"url":null,"abstract":"Reptiles make up one-third of tetrapods, however they are often omitted from global conservation analyses. Understanding the determinants of reptile distribution is the foundation for reptile conservation research. We assembled a dataset on the distribution of 231 reptile species (nearly 50% of recorded species in China). We then investigated the association of species range filling (the proportion of observed ranges compared to species potential climate distributions) with climate, range size, topography and human activity, using three regression methods. At the species level, we found the most primary factors influencing the recent distribution pattern of reptiles across China were the mean annual precipitation (MAP) and the mean annual temperature (MAT). In contrast, human activity came in last. Similarly, at a spatial level, MAP and MAT were still the most important factors. Geographically, the south and east of China support the highest reptile diversity, partially due to high precipitation. Contrary to the prevailing notion that reptile distributions are primarily shaped by human activities, our study re-emphasizes the importance of climate in determining reptile distribution. It accentuates the necessity of integrating climate variables into future animal conservation strategies in China. Our findings also offer valuable insights for informing conservation practices, including the site planning of natural reserves and national parks, as well as monitoring of environmental factors in protected areas.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"28 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07005","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Reptiles make up one-third of tetrapods, however they are often omitted from global conservation analyses. Understanding the determinants of reptile distribution is the foundation for reptile conservation research. We assembled a dataset on the distribution of 231 reptile species (nearly 50% of recorded species in China). We then investigated the association of species range filling (the proportion of observed ranges compared to species potential climate distributions) with climate, range size, topography and human activity, using three regression methods. At the species level, we found the most primary factors influencing the recent distribution pattern of reptiles across China were the mean annual precipitation (MAP) and the mean annual temperature (MAT). In contrast, human activity came in last. Similarly, at a spatial level, MAP and MAT were still the most important factors. Geographically, the south and east of China support the highest reptile diversity, partially due to high precipitation. Contrary to the prevailing notion that reptile distributions are primarily shaped by human activities, our study re-emphasizes the importance of climate in determining reptile distribution. It accentuates the necessity of integrating climate variables into future animal conservation strategies in China. Our findings also offer valuable insights for informing conservation practices, including the site planning of natural reserves and national parks, as well as monitoring of environmental factors in protected areas.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.