{"title":"Machine learning surrogate for 3D phase-field modeling of ferroelectric tip-induced electrical switching","authors":"Kévin Alhada–Lahbabi, Damien Deleruyelle, Brice Gautier","doi":"10.1038/s41524-024-01375-7","DOIUrl":null,"url":null,"abstract":"<p>Phase-field modeling offers a powerful tool for investigating the electrical control of the domain structure in ferroelectrics. However, its broad application is constrained by demanding computational requirements, limiting its utility in inverse design scenarios. Here, we introduce a machine-learning surrogate to accelerate 3D phase-field modeling of tip-induced electrical switching. By dynamically handling the boundary conditions, the surrogate achieves accurate reproduction of switching trajectories under various tip locations and applied voltages. With stable predictions throughout entire morphological evolution pathways and a relative error inferior to 10% compared to direct solvers, the model efficiently emulates intricate switching sequences. By successfully replicating the boundary conditions, the presented framework strides towards a holistic surrogate for the ferroelectric phase field. With up to 2500-fold speed-ups over classical methods, our approach opens the path for the tractable design of the domain structure and the resolution of realistic inverse problems.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"1 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01375-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Phase-field modeling offers a powerful tool for investigating the electrical control of the domain structure in ferroelectrics. However, its broad application is constrained by demanding computational requirements, limiting its utility in inverse design scenarios. Here, we introduce a machine-learning surrogate to accelerate 3D phase-field modeling of tip-induced electrical switching. By dynamically handling the boundary conditions, the surrogate achieves accurate reproduction of switching trajectories under various tip locations and applied voltages. With stable predictions throughout entire morphological evolution pathways and a relative error inferior to 10% compared to direct solvers, the model efficiently emulates intricate switching sequences. By successfully replicating the boundary conditions, the presented framework strides towards a holistic surrogate for the ferroelectric phase field. With up to 2500-fold speed-ups over classical methods, our approach opens the path for the tractable design of the domain structure and the resolution of realistic inverse problems.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.