Fuschia Serre, Christophe Gauld, Laura Lambert, Emmanuelle Baillet, Virginie Beltran, Jean-Pierre Daulouede, Jean-Arthur Micoulaud-Franchi, Marc Auriacombe
{"title":"Predictors of substance use during treatment for addiction: A network analysis of ecological momentary assessment data.","authors":"Fuschia Serre, Christophe Gauld, Laura Lambert, Emmanuelle Baillet, Virginie Beltran, Jean-Pierre Daulouede, Jean-Arthur Micoulaud-Franchi, Marc Auriacombe","doi":"10.1111/add.16658","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Ecological momentary assessment (EMA) studies have previously demonstrated a prospective influence of craving on substance use in the following hours. Conceptualizing substance use as a dynamic system of causal elements could provide valuable insights into the interaction of craving with other symptoms in the process of relapse. The aim of this study was to improve the understanding of these daily life dynamic inter-relationships by applying dynamic networks analyses to EMA data sets.</p><p><strong>Design, setting and participants: </strong>Secondary analyses were conducted on time-series data from two 2-week EMA studies. Data were collected in French outpatient addiction treatment centres. A total of 211 outpatients beginning treatment for alcohol, tobacco, cannabis, stimulants and opiate addiction took part.</p><p><strong>Measurements: </strong>Using mobile technologies, participants were questioned four times per day relative to substance use, craving, exposure to cues, mood, self-efficacy and pharmacological addiction treatment use. Multi-level vector auto-regression models were used to explore contemporaneous, temporal and between-subjects networks.</p><p><strong>Findings: </strong>Among the 8260 daily evaluations, the temporal network model, which depicts the lagged associations of symptoms within participants, demonstrated a unidirectional association between craving intensity at one time (T0) and primary substance use at the next assessment (T1, r = 0.1), after controlling for the effect of all other variables. A greater self-efficacy at T0 was associated with fewer cues (r = -0.04), less craving (r = -0.1) and less substance use at T1 (r = -0.07), and craving presented a negative feedback loop with self-efficacy (r = -0.09).</p><p><strong>Conclusions: </strong>Dynamic network analyses showed that, among outpatients beginning treatment for addiction, high craving, together with low self-efficacy, appear to predict substance use more strongly than low mood or high exposure to cues.</p>","PeriodicalId":109,"journal":{"name":"Addiction","volume":" ","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Addiction","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/add.16658","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims: Ecological momentary assessment (EMA) studies have previously demonstrated a prospective influence of craving on substance use in the following hours. Conceptualizing substance use as a dynamic system of causal elements could provide valuable insights into the interaction of craving with other symptoms in the process of relapse. The aim of this study was to improve the understanding of these daily life dynamic inter-relationships by applying dynamic networks analyses to EMA data sets.
Design, setting and participants: Secondary analyses were conducted on time-series data from two 2-week EMA studies. Data were collected in French outpatient addiction treatment centres. A total of 211 outpatients beginning treatment for alcohol, tobacco, cannabis, stimulants and opiate addiction took part.
Measurements: Using mobile technologies, participants were questioned four times per day relative to substance use, craving, exposure to cues, mood, self-efficacy and pharmacological addiction treatment use. Multi-level vector auto-regression models were used to explore contemporaneous, temporal and between-subjects networks.
Findings: Among the 8260 daily evaluations, the temporal network model, which depicts the lagged associations of symptoms within participants, demonstrated a unidirectional association between craving intensity at one time (T0) and primary substance use at the next assessment (T1, r = 0.1), after controlling for the effect of all other variables. A greater self-efficacy at T0 was associated with fewer cues (r = -0.04), less craving (r = -0.1) and less substance use at T1 (r = -0.07), and craving presented a negative feedback loop with self-efficacy (r = -0.09).
Conclusions: Dynamic network analyses showed that, among outpatients beginning treatment for addiction, high craving, together with low self-efficacy, appear to predict substance use more strongly than low mood or high exposure to cues.
期刊介绍:
Addiction publishes peer-reviewed research reports on pharmacological and behavioural addictions, bringing together research conducted within many different disciplines.
Its goal is to serve international and interdisciplinary scientific and clinical communication, to strengthen links between science and policy, and to stimulate and enhance the quality of debate. We seek submissions that are not only technically competent but are also original and contain information or ideas of fresh interest to our international readership. We seek to serve low- and middle-income (LAMI) countries as well as more economically developed countries.
Addiction’s scope spans human experimental, epidemiological, social science, historical, clinical and policy research relating to addiction, primarily but not exclusively in the areas of psychoactive substance use and/or gambling. In addition to original research, the journal features editorials, commentaries, reviews, letters, and book reviews.