Densification of Cathode/Electrolyte Interphase to Enhance Reversibility of LiCoO2 at 4.65 V.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-08-29 DOI:10.1002/adma.202408875
Hengyu Ren, Jiaxuan Hu, Haocheng Ji, Yuxiang Huang, Wenguang Zhao, Weiyuan Huang, Xiaohu Wang, Haocong Yi, Yongli Song, Jiajie Liu, Tongchao Liu, Ming Liu, Qinghe Zhao, Feng Pan
{"title":"Densification of Cathode/Electrolyte Interphase to Enhance Reversibility of LiCoO<sub>2</sub> at 4.65 V.","authors":"Hengyu Ren, Jiaxuan Hu, Haocheng Ji, Yuxiang Huang, Wenguang Zhao, Weiyuan Huang, Xiaohu Wang, Haocong Yi, Yongli Song, Jiajie Liu, Tongchao Liu, Ming Liu, Qinghe Zhao, Feng Pan","doi":"10.1002/adma.202408875","DOIUrl":null,"url":null,"abstract":"<p><p>For LiCoO<sub>2</sub> (LCO) operated beyond 4.55 V (vs Li/Li<sup>+</sup>), it usually suffers from severe surface degradation. Constructing a robust cathode/electrolyte interphase (CEI) is effective to alleviate the above issues, however, the correlated mechanisms still remain vague. Herein, a progressively reinforced CEI is realized via constructing Zr─O deposits (ZrO<sub>2</sub> and Li<sub>2</sub>ZrO<sub>3</sub>) on LCO surface (i.e., Z-LCO). Upon cycle, these Zr─O deposits can promote the decomposition of LiPF<sub>6</sub>, and progressively convert to the highly dispersed Zr─O─F species. In particular, the chemical reaction between LiF and Zr─O─F species further leads to the densification of CEI, which greatly reinforces its toughness and conductivity. Combining the robust CEI and thin surface rock-salt layer of Z-LCO, several benefits are achieved, including stabilizing the surface lattice oxygen, facilitating the interface Li<sup>+</sup> transport kinetics, and enhancing the reversibility of O3/H1-3 phase transition, etc. As a result, the Z-LCO||Li cells exhibit a high capacity retention of 84.2% after 1000 cycles in 3-4.65 V, 80.9% after 1500 cycles in 3-4.6 V, and a high rate capacity of 160 mAh g<sup>-1</sup> at 16 C (1 C = 200 mA g<sup>-1</sup>). This work provides a new insight for developing advanced LCO cathodes.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202408875","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For LiCoO2 (LCO) operated beyond 4.55 V (vs Li/Li+), it usually suffers from severe surface degradation. Constructing a robust cathode/electrolyte interphase (CEI) is effective to alleviate the above issues, however, the correlated mechanisms still remain vague. Herein, a progressively reinforced CEI is realized via constructing Zr─O deposits (ZrO2 and Li2ZrO3) on LCO surface (i.e., Z-LCO). Upon cycle, these Zr─O deposits can promote the decomposition of LiPF6, and progressively convert to the highly dispersed Zr─O─F species. In particular, the chemical reaction between LiF and Zr─O─F species further leads to the densification of CEI, which greatly reinforces its toughness and conductivity. Combining the robust CEI and thin surface rock-salt layer of Z-LCO, several benefits are achieved, including stabilizing the surface lattice oxygen, facilitating the interface Li+ transport kinetics, and enhancing the reversibility of O3/H1-3 phase transition, etc. As a result, the Z-LCO||Li cells exhibit a high capacity retention of 84.2% after 1000 cycles in 3-4.65 V, 80.9% after 1500 cycles in 3-4.6 V, and a high rate capacity of 160 mAh g-1 at 16 C (1 C = 200 mA g-1). This work provides a new insight for developing advanced LCO cathodes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阴极/电解质间相的致密化提高了钴酸锂在 4.65 V 电压下的可逆性。
对于工作电压超过 4.55 V(相对于 Li/Li+)的钴酸锂(LCO),通常会出现严重的表面降解。构建坚固的阴极/电解质间相(CEI)可有效缓解上述问题,但其相关机制仍然模糊不清。在此,通过在 LCO 表面(即 Z-LCO)构建 Zr─O 沉积物(ZrO2 和 Li2ZrO3),实现了逐步强化的 CEI。在循环过程中,这些 Zr─O 沉积物可促进 LiPF6 的分解,并逐渐转化为高度分散的 Zr─O─F 物种。特别是,LiF 和 Zr─O─F 物种之间的化学反应会进一步导致 CEI 的致密化,从而大大增强其韧性和导电性。将坚固的 CEI 与 Z-LCO 的薄表面岩盐层相结合,可实现多种益处,包括稳定表面晶格氧、促进界面 Li+ 传输动力学、提高 O3/H1-3 相变的可逆性等。因此,Z-LCO||锂电池在 3-4.65 V 条件下循环 1000 次后的容量保持率高达 84.2%,在 3-4.6 V 条件下循环 1500 次后的容量保持率高达 80.9%,在 16 C 条件下的速率容量高达 160 mAh g-1(1 C = 200 mA g-1)。这项研究为开发先进的 LCO 阴极提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Advancing Heterogeneous Organic Synthesis With Coordination Chemistry-Empowered Single-Atom Catalysts Unveiling the In Situ Evolution of Li2O-Rich Solid Electrolyte Interface on CoOx Embedded Carbon Fibers as Li Anode Host Mass Production of Multishell Hollow SiO2 Spheres With Adjustable Void Ratios and Pore Structures Visible-Near Infrared Independent Modulation of Hexagonal WO3 Induced by Ionic Insertion Sequence and Cavity Characteristics Stable Seawater Electrolysis Over 10 000 H via Chemical Fixation of Sulfate on NiFeBa-LDH
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1