Precisely Tunable Instantaneous Carbon Rearrangement Enables Low-Working-Potential Hard Carbon Toward Sodium-Ion Batteries with Enhanced Energy Density.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-09-02 DOI:10.1002/adma.202407369
Junjie Liu, Yiwei You, Ling Huang, Qizheng Zheng, Zhefei Sun, Kai Fang, Liyuan Sha, Miao Liu, Xiao Zhan, Jinbao Zhao, Ye-Chuang Han, Qiaobao Zhang, Yanan Chen, Shunqing Wu, Li Zhang
{"title":"Precisely Tunable Instantaneous Carbon Rearrangement Enables Low-Working-Potential Hard Carbon Toward Sodium-Ion Batteries with Enhanced Energy Density.","authors":"Junjie Liu, Yiwei You, Ling Huang, Qizheng Zheng, Zhefei Sun, Kai Fang, Liyuan Sha, Miao Liu, Xiao Zhan, Jinbao Zhao, Ye-Chuang Han, Qiaobao Zhang, Yanan Chen, Shunqing Wu, Li Zhang","doi":"10.1002/adma.202407369","DOIUrl":null,"url":null,"abstract":"<p><p>As the preferred anode material for sodium-ion batteries, hard carbon (HC) confronts significant obstacles in providing a long and dominant low-voltage plateau to boost the output energy density of full batteries. The critical challenge lies in precisely enhancing the local graphitization degree to minimize Na<sup>+</sup> ad-/chemisorption, while effectively controlling the growth of internal closed nanopores to maximize Na<sup>+</sup> filling. Unfortunately, traditional high-temperature preparation methods struggle to achieve both objectives simultaneously. Herein, a transient sintering-involved kinetically-controlled synthesis strategy is proposed that enables the creation of metastable HCs with precisely tunable carbon phases and low discharge/charge voltage plateaus. By optimizing the temperature and width of thermal pulses, the high-throughput screened HCs are characterized by short-range ordered graphitic micro-domains that possess accurate crystallite width and height, as well as appropriately-sized closed nanopores. This advancement realizes HC anodes with significantly prolonged low-voltage plateaus below 0.1 V, with the best sample exhibiting a high plateau capacity of up to 325 mAh g<sup>-1</sup>. The energy density of the HC||Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> full battery can therefore be increased by 20.7%. Machine learning study explicitly unveils the \"carbon phase evolution-electrochemistry\" relationship. This work promises disruptive changes to the synthesis, optimization, and commercialization of HC anodes for high-energy-density sodium-ion batteries.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202407369","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As the preferred anode material for sodium-ion batteries, hard carbon (HC) confronts significant obstacles in providing a long and dominant low-voltage plateau to boost the output energy density of full batteries. The critical challenge lies in precisely enhancing the local graphitization degree to minimize Na+ ad-/chemisorption, while effectively controlling the growth of internal closed nanopores to maximize Na+ filling. Unfortunately, traditional high-temperature preparation methods struggle to achieve both objectives simultaneously. Herein, a transient sintering-involved kinetically-controlled synthesis strategy is proposed that enables the creation of metastable HCs with precisely tunable carbon phases and low discharge/charge voltage plateaus. By optimizing the temperature and width of thermal pulses, the high-throughput screened HCs are characterized by short-range ordered graphitic micro-domains that possess accurate crystallite width and height, as well as appropriately-sized closed nanopores. This advancement realizes HC anodes with significantly prolonged low-voltage plateaus below 0.1 V, with the best sample exhibiting a high plateau capacity of up to 325 mAh g-1. The energy density of the HC||Na3V2(PO4)3 full battery can therefore be increased by 20.7%. Machine learning study explicitly unveils the "carbon phase evolution-electrochemistry" relationship. This work promises disruptive changes to the synthesis, optimization, and commercialization of HC anodes for high-energy-density sodium-ion batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可精确调谐的瞬时碳重排使低工作电位硬碳成为可能,从而实现能量密度更高的钠离子电池。
作为钠离子电池的首选负极材料,硬碳(HC)在提供较长的主要低电压高原以提高全电池输出能量密度方面面临着重大障碍。关键的挑战在于如何精确提高局部石墨化程度,最大限度地减少 Na+ 的吸附/化学吸附,同时有效控制内部封闭纳米孔的生长,最大限度地增加 Na+ 的填充。遗憾的是,传统的高温制备方法很难同时实现这两个目标。本文提出了一种由瞬态烧结参与的动力学控制合成策略,该策略能够制造出具有精确可调碳相和低放电/充电电压高原的可蜕变碳氢化合物。通过优化热脉冲的温度和宽度,高通量筛选出的碳氢化合物具有短程有序的石墨微域,这些微域具有精确的晶粒宽度和高度,以及适当大小的封闭纳米孔。这一进步实现了碳氢化合物阳极在 0.1 V 以下的低电压高电平显著延长,最佳样品的高电平容量高达 325 mAh g-1。因此,HC||Na3V2(PO4)3全电池的能量密度可提高20.7%。机器学习研究明确揭示了 "碳相演化-电化学 "关系。这项工作有望为高能量密度钠离子电池的碳氢化合物阳极的合成、优化和商业化带来颠覆性的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Cu-Atom Locations in Rocksalt SnTe Thermoelectric Alloy. Oriented Crystal Polarization Tuning Bulk Charge and Single-Site Chemical State for Exceptional Hydrogen Photo-Production. A Mg Battery-Integrated Bioelectronic Patch Provides Efficient Electrochemical Stimulations for Wound Healing. Concentration-Switchable Assembly of Carbon Dots for Circularly Polarized Luminescent Amplification in Chiral Logic Gates and Deep-Red Light-Emitting Diodes. Hierarchically Ordered Pore Engineering of Carbon Supports with High-Density Edge-Type Single-Atom Sites to Boost Electrochemical CO2 Reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1