Low-Solvent-Coordination Solvation Structure for Lithium-Metal Batteries via Electric Dipole-Dipole Interaction

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-08-30 DOI:10.1002/anie.202412703
Cong Kang, Jiaming Zhu, Dr. Fanpeng Kong, Xiangjun Xiao, Hua Huo, Yulin Ma, Prof. Yueping Xiong, Ying Luo, Taolin Lv, Jingying Xie, Prof. Geping Yin
{"title":"Low-Solvent-Coordination Solvation Structure for Lithium-Metal Batteries via Electric Dipole-Dipole Interaction","authors":"Cong Kang,&nbsp;Jiaming Zhu,&nbsp;Dr. Fanpeng Kong,&nbsp;Xiangjun Xiao,&nbsp;Hua Huo,&nbsp;Yulin Ma,&nbsp;Prof. Yueping Xiong,&nbsp;Ying Luo,&nbsp;Taolin Lv,&nbsp;Jingying Xie,&nbsp;Prof. Geping Yin","doi":"10.1002/anie.202412703","DOIUrl":null,"url":null,"abstract":"<p>Unveiling inherent interactions among solvents, Li<sup>+</sup> ions, and anions are crucial in dictating solvation-desolvation kinetics at the electrode/electrolyte interface. Developing an electrolyte with a low ion-transport barrier and minimal solvent coordination in its interfacial solvation structure is essential for forming an anion-derived solid-electrolyte interface, a key component for high-performance Li-metal batteries. In this study, we harness electric dipole-dipole synergistic interactions to formulate an electrolyte with significantly reduced interfacial solvent coordination. Operando characterization and theoretical analysis reveal that 2-fluoropyridine (FPy) with high dipole preferentially adsorbs onto the Li metal surface. The adsorbed FPy molecule squeezes succinonitrile in the primary solvation sheath through steric hindrance, leading to the formation of an inorganic-rich interphase. Consequently, the introduction of FPy enhances the reversible capacity of the LiCoO<sub>2</sub>||Li cell, which maintains a capacity of 143 mAh g<sup>−1</sup> after 500 cycles at a 1 C rate. Moreover, the cycle life of LiCoO<sub>2</sub> batteries with a limited supply of lithium extends from 120 cycles to over 200 cycles. These findings offer a strategy that can be applied broadly to design interfacial solvation structures for various metal-ion/metal-based batteries.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 52","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202412703","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Unveiling inherent interactions among solvents, Li+ ions, and anions are crucial in dictating solvation-desolvation kinetics at the electrode/electrolyte interface. Developing an electrolyte with a low ion-transport barrier and minimal solvent coordination in its interfacial solvation structure is essential for forming an anion-derived solid-electrolyte interface, a key component for high-performance Li-metal batteries. In this study, we harness electric dipole-dipole synergistic interactions to formulate an electrolyte with significantly reduced interfacial solvent coordination. Operando characterization and theoretical analysis reveal that 2-fluoropyridine (FPy) with high dipole preferentially adsorbs onto the Li metal surface. The adsorbed FPy molecule squeezes succinonitrile in the primary solvation sheath through steric hindrance, leading to the formation of an inorganic-rich interphase. Consequently, the introduction of FPy enhances the reversible capacity of the LiCoO2||Li cell, which maintains a capacity of 143 mAh g−1 after 500 cycles at a 1 C rate. Moreover, the cycle life of LiCoO2 batteries with a limited supply of lithium extends from 120 cycles to over 200 cycles. These findings offer a strategy that can be applied broadly to design interfacial solvation structures for various metal-ion/metal-based batteries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过电偶极子-偶极子相互作用实现锂金属电池的低溶剂配位溶解结构
揭示溶剂、Li+ 离子和阴离子之间固有的相互作用对于决定电极/电解质界面的溶解-解溶解动力学至关重要。要形成阴离子衍生的固体-电解质界面(高性能锂金属电池的关键部件),就必须开发一种离子传输障碍低、界面溶解结构中溶剂配位最少的电解质。在这项研究中,我们利用电偶极子-偶极子协同作用,配制出一种界面溶剂配位显著降低的电解质。操作表征和理论分析表明,具有高偶极子的 2-氟吡啶(FPy)优先吸附在锂金属表面。吸附的 FPy 分子通过立体阻碍挤压主溶解鞘中的琥珀腈,从而形成富含无机物的中间相。因此,FPy 的引入增强了钴酸锂电池的可逆容量,在 1C 速率下循环 500 次后,其容量仍能保持在 143 mAh g-1 的水平。此外,在锂供应有限的情况下,钴酸锂电池的循环寿命从 120 次延长到 200 次以上。这些发现提供了一种策略,可广泛应用于设计各种金属离子/金属基电池的界面溶解结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Lucas Foppa Fluorination from Surface to Bulk Stabilizing High Nickel Cathode Materials with Outstanding Electrochemical Performance Benzyl Ammonium Carbamates Undergo Two-Step Linker Cleavage and Improve the Properties of Antibody Conjugates Angewandte Chemie: One Journal, Many Faces Jordan Hobbs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1