Preparation of Poly(allylamine Hydrochloride) Grafted Porous Boron Nitride Fibers for Efficient Cr(VI) Adsorption from Aqueous Solution.

IF 3 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemPlusChem Pub Date : 2024-08-30 DOI:10.1002/cplu.202400470
Dong Wang, Zirui Song, Chaochao Cao, Chengchun Tang
{"title":"Preparation of Poly(allylamine Hydrochloride) Grafted Porous Boron Nitride Fibers for Efficient Cr(VI) Adsorption from Aqueous Solution.","authors":"Dong Wang, Zirui Song, Chaochao Cao, Chengchun Tang","doi":"10.1002/cplu.202400470","DOIUrl":null,"url":null,"abstract":"<p><p>Cr(VI) pollution poses great harm to the cyclic utilization of groundwater and surface water resources. Efficient adsorbent materials have great potential to change this situation and assist in the restoration of ecosystems. This work chooses porous boron nitride fibers (pBN) with stable physical and chemical properties as the matrix, 3-aminopropyltriethoxysilane (APTES) as the coupling agent, and uses a one-step crosslinking method to graft poly(allylamine hydrochloride) (PAH) onto pBN, forming pBN-AS@PAH with fascinating Cr(VI) adsorption capacity. PAH is uniformly covered and modified on the surface of pBN, and the composite with high specific surface area (383.33 m<sup>2</sup>/g), large pore volume (0.37 cm<sup>3</sup>/g), and abundant amino groups. Its equilibrium adsorption capacity for Cr(VI) can reach up to 123.32 mg/g, and the adsorption behavior follows the quasi second-order kinetic model and Langmuir model, indicating the chemical adsorption process of monolayer. The adsorption style belongs to a spontaneous exothermic process and has the optimal adsorption effect at a pH of ~2. Additionally, after cycling for 5 times, the decrease rate of adsorption capacity is less than 10 %, showing an excellent reusability.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400470"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400470","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cr(VI) pollution poses great harm to the cyclic utilization of groundwater and surface water resources. Efficient adsorbent materials have great potential to change this situation and assist in the restoration of ecosystems. This work chooses porous boron nitride fibers (pBN) with stable physical and chemical properties as the matrix, 3-aminopropyltriethoxysilane (APTES) as the coupling agent, and uses a one-step crosslinking method to graft poly(allylamine hydrochloride) (PAH) onto pBN, forming pBN-AS@PAH with fascinating Cr(VI) adsorption capacity. PAH is uniformly covered and modified on the surface of pBN, and the composite with high specific surface area (383.33 m2/g), large pore volume (0.37 cm3/g), and abundant amino groups. Its equilibrium adsorption capacity for Cr(VI) can reach up to 123.32 mg/g, and the adsorption behavior follows the quasi second-order kinetic model and Langmuir model, indicating the chemical adsorption process of monolayer. The adsorption style belongs to a spontaneous exothermic process and has the optimal adsorption effect at a pH of ~2. Additionally, after cycling for 5 times, the decrease rate of adsorption capacity is less than 10 %, showing an excellent reusability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制备聚(烯丙胺盐酸盐)接枝多孔氮化硼纤维,用于从水溶液中高效吸附 Cr(VI)。
六价铬污染对地下水和地表水资源的循环利用造成了巨大危害。高效吸附材料在改变这种状况和帮助恢复生态系统方面具有巨大潜力。本研究选用物理和化学性能稳定的多孔氮化硼纤维(pBN)作为基体,3-氨丙基三乙氧基硅烷(APTES)作为偶联剂,采用一步交联法将聚(烯丙基胺盐酸盐)(PAH)接枝到 pBN 上,形成具有极强六价铬吸附能力的 pBN-AS@PAH。PAH 在 pBN 表面被均匀包覆和修饰,复合材料具有高比表面积(383.33 m2/g)、大孔隙率(0.37 cm3/g)和丰富的氨基基团。其对六价铬的平衡吸附容量可达 123.32 mg/g,吸附行为遵循准二阶动力学模型和 Langmuir 模型,表明其为单层化学吸附过程。此外,在循环使用 5 次后,吸附容量的下降率小于 10%,显示出良好的可重复使用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemPlusChem
ChemPlusChem CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
5.90
自引率
0.00%
发文量
200
审稿时长
1 months
期刊介绍: ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.
期刊最新文献
Origin of Regioselectivity Inversion Tuned by Substrate Electronic Properties in Co(III)-Catalyzed Annulation of N-Chlorobenzamide with Alkenes. The Dual-Role of Benzothiadiazole Fluorophores for Enabling Electrofluorochromic and Electrochromic Devices. Modelling Lithium-ion Transport Properties in Sulfoxides and Sulfones with Polarizable Molecular Dynamics and NMR Spectroscopy. Why Including Solvation is Paramount: First-Principles Calculations of Electrochemical CO2 Reduction to CO on a Cu Electrocatalyst. Thermoresponsive Polymers as Viscosity Modifiers: Innovative Nanoarchitectures as Lubricant Additives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1