Kathleen Joyce Carillo, Yanan He, Qiushi Ye, Nicolas Delaeter, Yihong Chen, John Orban, Yanxin Liu
{"title":"Solution NMR backbone resonance assignment of the full-length resistance-related calcium-binding protein Sorcin","authors":"Kathleen Joyce Carillo, Yanan He, Qiushi Ye, Nicolas Delaeter, Yihong Chen, John Orban, Yanxin Liu","doi":"10.1007/s12104-024-10196-0","DOIUrl":null,"url":null,"abstract":"<div><p>Sorcin is a penta-EF hand calcium-binding protein that confers multidrug resistance in cancer cells. It regulates cellular Ca<sup>2+</sup> homeostasis by interacting with calcium channels such as Ryanodine receptor 2 and Sarcoplasmic/endoplasmic reticulum Ca<sup>2+</sup>-ATPase in a calcium-dependent manner. The crystal structure of the Sorcin has been determined in both calcium-free and calcium-bound states to understand calcium-binding induced conformational change. However, due to its flexibility, most of the N-terminal domain is invisible in these crystal structures. Here we report the <sup>1</sup>H, <sup>13</sup>C, and <sup>15</sup>N backbone resonance assignments of full-length Sorcin in the calcium-free state using solution NMR. The protein secondary structure was predicted based on the assigned backbone chemical shifts using TALOS+ and CSI 3.0. Our backbone resonance assignment of the full-length Sorcin provides a foundation for future NMR spectroscopic studies to uncover the mechanism of Ca<sup>2+</sup> sensing by Sorcin.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"253 - 256"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-024-10196-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Sorcin is a penta-EF hand calcium-binding protein that confers multidrug resistance in cancer cells. It regulates cellular Ca2+ homeostasis by interacting with calcium channels such as Ryanodine receptor 2 and Sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in a calcium-dependent manner. The crystal structure of the Sorcin has been determined in both calcium-free and calcium-bound states to understand calcium-binding induced conformational change. However, due to its flexibility, most of the N-terminal domain is invisible in these crystal structures. Here we report the 1H, 13C, and 15N backbone resonance assignments of full-length Sorcin in the calcium-free state using solution NMR. The protein secondary structure was predicted based on the assigned backbone chemical shifts using TALOS+ and CSI 3.0. Our backbone resonance assignment of the full-length Sorcin provides a foundation for future NMR spectroscopic studies to uncover the mechanism of Ca2+ sensing by Sorcin.
期刊介绍:
Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties.
Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.