Rushikesh Sanjay Mane, Bishun Deo Prasad, Sangita Sahni, Zeba Quaiyum, V. K. Sharma
{"title":"Biotechnological studies towards improvement of finger millet using multi-omics approaches","authors":"Rushikesh Sanjay Mane, Bishun Deo Prasad, Sangita Sahni, Zeba Quaiyum, V. K. Sharma","doi":"10.1007/s10142-024-01438-4","DOIUrl":null,"url":null,"abstract":"<div><p>A plethora of studies have uncovered numerous important genes with agricultural significance in staple crops. However, when it comes to orphan crops like minor millet, genomic research lags significantly behind that of major crops. This situation has promoted a focus on exploring research opportunities in minor millets, particularly in finger millet, using cutting-edge methods. Finger millet, a coarse cereal known for its exceptional nutritional content and ability to withstand environmental stresses represents a promising climate-smart and nutritional crop in the battle against escalating environmental challenges. The existing traditional improvement programs for finger millet are insufficient to address global hunger effectively. The lack of utilization of high-throughput platforms, genome editing, haplotype breeding, and advanced breeding approaches hinders the systematic multi-omics studies on finger millet, which are essential for pinpointing crucial genes related to agronomically important and various stress responses. The growing environmental uncertainties have widened the gap between the anticipated and real progress in crop improvement. To overcome these challenges a combination of cutting-edge multi-omics techniques such as high-throughput sequencing, speed breeding, mutational breeding, haplotype-based breeding, genomic selection, high-throughput phenotyping, pangenomics, genome editing, and more along with integration of deep learning and artificial intelligence technologies are essential to accelerate research efforts in finger millet. The scarcity of multi-omics approaches in finger millet leaves breeders with limited modern tools for crop enhancement. Therefore, leveraging datasets from previous studies could prove effective in implementing the necessary multi-omics interventions to enrich the genetic resource in finger millet.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"24 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-024-01438-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
A plethora of studies have uncovered numerous important genes with agricultural significance in staple crops. However, when it comes to orphan crops like minor millet, genomic research lags significantly behind that of major crops. This situation has promoted a focus on exploring research opportunities in minor millets, particularly in finger millet, using cutting-edge methods. Finger millet, a coarse cereal known for its exceptional nutritional content and ability to withstand environmental stresses represents a promising climate-smart and nutritional crop in the battle against escalating environmental challenges. The existing traditional improvement programs for finger millet are insufficient to address global hunger effectively. The lack of utilization of high-throughput platforms, genome editing, haplotype breeding, and advanced breeding approaches hinders the systematic multi-omics studies on finger millet, which are essential for pinpointing crucial genes related to agronomically important and various stress responses. The growing environmental uncertainties have widened the gap between the anticipated and real progress in crop improvement. To overcome these challenges a combination of cutting-edge multi-omics techniques such as high-throughput sequencing, speed breeding, mutational breeding, haplotype-based breeding, genomic selection, high-throughput phenotyping, pangenomics, genome editing, and more along with integration of deep learning and artificial intelligence technologies are essential to accelerate research efforts in finger millet. The scarcity of multi-omics approaches in finger millet leaves breeders with limited modern tools for crop enhancement. Therefore, leveraging datasets from previous studies could prove effective in implementing the necessary multi-omics interventions to enrich the genetic resource in finger millet.
期刊介绍:
Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?