NSUN7 promotes cervical cancer progression through activation of ErbB signaling pathway

IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY Functional & Integrative Genomics Pub Date : 2025-02-15 DOI:10.1007/s10142-025-01546-9
Yuxia Li, Ruijiao Lu, Xieyidai Abuduhailili, Yangchun Feng
{"title":"NSUN7 promotes cervical cancer progression through activation of ErbB signaling pathway","authors":"Yuxia Li,&nbsp;Ruijiao Lu,&nbsp;Xieyidai Abuduhailili,&nbsp;Yangchun Feng","doi":"10.1007/s10142-025-01546-9","DOIUrl":null,"url":null,"abstract":"<div><p>We aimed to investigate the role of NSUN7 in the progression of Cervical Cancer through a combination of bioinformatics analysis and cell and animal culture experiments. We comprehensively assessed the expression levels of NSUN7 in the TCGA and CCLE databases, and explored its correlations with clinicopathological features, immune cell infiltration, DNA damage repair gene function, drug sensitivity, and methylation status. The NSUN7 gene was disrupted through lentiviral infection, and the effects on cell proliferation, invasion, and apoptosis were evaluated using CCK-8 assay, Transwell migration assay, and flow cytometry analysis. Gene enrichment analysis wasidentify the biological pathways associated with NSUN7 and cervical cancer development. Additionally, a xenograft model of cervical cancer was established to assess the in vivo inhibitory effect of NSUN7 and its impact on pathway molecules. The results of both in vitro and in vivo experiments confirmed that silencing the NSUN7 gene significantly inhibited the growth, spread, and metastasis of cervical cancer cells, while promoting apoptosis. TUNEL assay and HE staining further verified the apoptotic effect of NSUN7 on tumor tissues, and KEGG enrichment analysis revealed a significant enrichment of NSUN7 in the ErbB pathway. Silencing of NSUN7 resulted in a significant down-regulation of key ErbB pathway proteins (HER2, STAT5, PI3K/p-PI3K) as demonstrated by quantitative real-time PCR and Western blot. These findings suggest that NSUN7 may affect the biological behavior of cervical cancer cells and promote tumor development by activating the ErbB signaling pathway.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-025-01546-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

We aimed to investigate the role of NSUN7 in the progression of Cervical Cancer through a combination of bioinformatics analysis and cell and animal culture experiments. We comprehensively assessed the expression levels of NSUN7 in the TCGA and CCLE databases, and explored its correlations with clinicopathological features, immune cell infiltration, DNA damage repair gene function, drug sensitivity, and methylation status. The NSUN7 gene was disrupted through lentiviral infection, and the effects on cell proliferation, invasion, and apoptosis were evaluated using CCK-8 assay, Transwell migration assay, and flow cytometry analysis. Gene enrichment analysis wasidentify the biological pathways associated with NSUN7 and cervical cancer development. Additionally, a xenograft model of cervical cancer was established to assess the in vivo inhibitory effect of NSUN7 and its impact on pathway molecules. The results of both in vitro and in vivo experiments confirmed that silencing the NSUN7 gene significantly inhibited the growth, spread, and metastasis of cervical cancer cells, while promoting apoptosis. TUNEL assay and HE staining further verified the apoptotic effect of NSUN7 on tumor tissues, and KEGG enrichment analysis revealed a significant enrichment of NSUN7 in the ErbB pathway. Silencing of NSUN7 resulted in a significant down-regulation of key ErbB pathway proteins (HER2, STAT5, PI3K/p-PI3K) as demonstrated by quantitative real-time PCR and Western blot. These findings suggest that NSUN7 may affect the biological behavior of cervical cancer cells and promote tumor development by activating the ErbB signaling pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
3.40%
发文量
92
审稿时长
2 months
期刊介绍: Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?
期刊最新文献
A curated tissue-specific proteome, phosphoproteome, and kinome map of Drosophila melanogaster with an integrated outlook in circadian physiology Evolution of phenylalanine ammonia-lyase protein family from algae to angiosperm Unraveling key genes and pathways involved in Verticillium wilt resistance by integrative GWAS and transcriptomic approaches in Upland cotton Deciphering nutrient stress in plants: integrative insight from metabolomics and proteomics NSUN7 promotes cervical cancer progression through activation of ErbB signaling pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1