Volker Kahlenberg, Hannes Krüger, Sonja Garber, Biljana Krüger, Eugen Libowitzky, Stefanie Kröll, Thomas S Hofer, Josef M Gallmetzer, Felix R S Purtscher
{"title":"K<sub>0.72</sub>Na<sub>1.71</sub>Ca<sub>5.79</sub>Si<sub>6</sub>O<sub>19</sub> - the first oligosilicate based on [Si<sub>6</sub>O<sub>19</sub>]-hexamers and its stability compared to cyclosilicates.","authors":"Volker Kahlenberg, Hannes Krüger, Sonja Garber, Biljana Krüger, Eugen Libowitzky, Stefanie Kröll, Thomas S Hofer, Josef M Gallmetzer, Felix R S Purtscher","doi":"10.1107/S2052520624007352","DOIUrl":null,"url":null,"abstract":"<p><p>Synthesis experiments were conducted in the quaternary system K<sub>2</sub>O-Na<sub>2</sub>O-CaO-SiO<sub>2</sub>, resulting in the formation of a previously unknown compound with the composition K<sub>0.72</sub>Na<sub>1.71</sub>Ca<sub>5.79</sub>Si<sub>6</sub>O<sub>19</sub>. Single crystals of sufficient size and quality were recovered from a starting mixture with a K<sub>2</sub>O:Na<sub>2</sub>O:CaO:SiO<sub>2</sub> molar ratio of 1.5:0.5:2:3. The mixture was confined in a closed platinum tube and slowly cooled from 1150°C at a rate of 0.1°C min<sup>-1</sup> to 700°C before being finally quenched in air. The structure has tetragonal symmetry and belongs to space group P4<sub>1</sub>22 (No. 91), with a = 7.3659 (2), c = 32.2318 (18) Å, V = 1748.78 (12) Å<sup>3</sup>, and Z = 4. The silicate anion consists of highly puckered, unbranched six-membered oligomers with the composition [Si<sub>6</sub>O<sub>19</sub>] and point group symmetry 2 (C<sub>2</sub>). Although several thousands of natural and synthetic oxosilicates have been structurally characterized, this compound is the first representative of a catena-hexasilicate anion, to the best of our knowledge. Structural investigations were completed using Raman spectroscopy. The spectroscopic data was interpreted and the bands were assigned to certain vibrational species with the support of density functional theory at the HSEsol level of theory. To determine the stability properties of the novel oligosilicate compared to those of the chemically and structurally similar cyclosilicate combeite, we calculated the electronegativity of the respective structures using the electronegativity equalization method. The results showed that the molecular electronegativity of the cyclosilicate was significantly higher than that of the oligostructure due to the different connectivities of the oxygen atoms within the molecular units.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457099/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2052520624007352","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Synthesis experiments were conducted in the quaternary system K2O-Na2O-CaO-SiO2, resulting in the formation of a previously unknown compound with the composition K0.72Na1.71Ca5.79Si6O19. Single crystals of sufficient size and quality were recovered from a starting mixture with a K2O:Na2O:CaO:SiO2 molar ratio of 1.5:0.5:2:3. The mixture was confined in a closed platinum tube and slowly cooled from 1150°C at a rate of 0.1°C min-1 to 700°C before being finally quenched in air. The structure has tetragonal symmetry and belongs to space group P4122 (No. 91), with a = 7.3659 (2), c = 32.2318 (18) Å, V = 1748.78 (12) Å3, and Z = 4. The silicate anion consists of highly puckered, unbranched six-membered oligomers with the composition [Si6O19] and point group symmetry 2 (C2). Although several thousands of natural and synthetic oxosilicates have been structurally characterized, this compound is the first representative of a catena-hexasilicate anion, to the best of our knowledge. Structural investigations were completed using Raman spectroscopy. The spectroscopic data was interpreted and the bands were assigned to certain vibrational species with the support of density functional theory at the HSEsol level of theory. To determine the stability properties of the novel oligosilicate compared to those of the chemically and structurally similar cyclosilicate combeite, we calculated the electronegativity of the respective structures using the electronegativity equalization method. The results showed that the molecular electronegativity of the cyclosilicate was significantly higher than that of the oligostructure due to the different connectivities of the oxygen atoms within the molecular units.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.