Post-translational modifications in the Protein Data Bank.

IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Acta Crystallographica. Section D, Structural Biology Pub Date : 2024-09-01 Epub Date: 2024-08-29 DOI:10.1107/S2059798324007794
Lucy C Schofield, Jordan S Dialpuri, Garib N Murshudov, Jon Agirre
{"title":"Post-translational modifications in the Protein Data Bank.","authors":"Lucy C Schofield, Jordan S Dialpuri, Garib N Murshudov, Jon Agirre","doi":"10.1107/S2059798324007794","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins frequently undergo covalent modification at the post-translational level, which involves the covalent attachment of chemical groups onto amino acids. This can entail the singular or multiple addition of small groups, such as phosphorylation; long-chain modifications, such as glycosylation; small proteins, such as ubiquitination; as well as the interconversion of chemical groups, such as the formation of pyroglutamic acid. These post-translational modifications (PTMs) are essential for the normal functioning of cells, as they can alter the physicochemical properties of amino acids and therefore influence enzymatic activity, protein localization, protein-protein interactions and protein stability. Despite their inherent importance, accurately depicting PTMs in experimental studies of protein structures often poses a challenge. This review highlights the role of PTMs in protein structures, as well as the prevalence of PTMs in the Protein Data Bank, directing the reader to accurately built examples suitable for use as a modelling reference.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394121/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798324007794","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Proteins frequently undergo covalent modification at the post-translational level, which involves the covalent attachment of chemical groups onto amino acids. This can entail the singular or multiple addition of small groups, such as phosphorylation; long-chain modifications, such as glycosylation; small proteins, such as ubiquitination; as well as the interconversion of chemical groups, such as the formation of pyroglutamic acid. These post-translational modifications (PTMs) are essential for the normal functioning of cells, as they can alter the physicochemical properties of amino acids and therefore influence enzymatic activity, protein localization, protein-protein interactions and protein stability. Despite their inherent importance, accurately depicting PTMs in experimental studies of protein structures often poses a challenge. This review highlights the role of PTMs in protein structures, as well as the prevalence of PTMs in the Protein Data Bank, directing the reader to accurately built examples suitable for use as a modelling reference.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质数据库中的翻译后修饰。
蛋白质经常在翻译后水平进行共价修饰,这涉及将化学基团共价连接到氨基酸上。这可能包括单个或多个小基团的添加,如磷酸化;长链修饰,如糖基化;小蛋白,如泛素化;以及化学基团的相互转化,如焦谷氨酸的形成。这些翻译后修饰(PTM)对细胞的正常功能至关重要,因为它们可以改变氨基酸的理化性质,从而影响酶活性、蛋白质定位、蛋白质与蛋白质之间的相互作用以及蛋白质的稳定性。尽管 PTM 本身非常重要,但在蛋白质结构的实验研究中准确描述 PTM 往往是一个挑战。这篇综述强调了 PTM 在蛋白质结构中的作用,以及蛋白质数据库中 PTM 的普遍性,引导读者准确构建适合用作建模参考的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Crystallographica. Section D, Structural Biology
Acta Crystallographica. Section D, Structural Biology BIOCHEMICAL RESEARCH METHODSBIOCHEMISTRY &-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
4.50
自引率
13.60%
发文量
216
期刊介绍: Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them. Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged. Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.
期刊最新文献
Comparison of two crystal polymorphs of NowGFP reveals a new conformational state trapped by crystal packing. Post-translational modifications in the Protein Data Bank. Structural analysis of a ligand-triggered intermolecular disulfide switch in a major latex protein from opium poppy. Surface-mutagenesis strategies to enable structural biology crystallization platforms. A snapshot love story: what serial crystallography has done and will do for us.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1