Room-temperature mL-to-μL quantitative liquid concentration device for cyclone flow.

IF 1.8 4区 化学 Q3 CHEMISTRY, ANALYTICAL Analytical Sciences Pub Date : 2024-08-30 DOI:10.1007/s44211-024-00654-z
Hidekatsu Tazawa, Kazuma Mawatari
{"title":"Room-temperature mL-to-μL quantitative liquid concentration device for cyclone flow.","authors":"Hidekatsu Tazawa, Kazuma Mawatari","doi":"10.1007/s44211-024-00654-z","DOIUrl":null,"url":null,"abstract":"<p><p>Highly sensitive quantitative analysis of liquids is required in various fields. Analytical instruments and devices such as chromatography, spectroscopic analysis, DNA sequencers, immunoassay, mass spectrometry, and microfluidic devices are utilized for this purpose. Typically, the sample volume is at the milliliter scale, while the analysis volume is at the microliter scale. Consequently, most of the sample is discarded. Therefore, a universal volume interface is required to quantitatively concentrate samples from milliliter to microliter volume. This study introduces a liquid quantitative function to the cyclone concentration method using a millimeter-scale channel, which is highly suitable for controlling liquids at the microliter scale due to its high fluidic resistance against cyclone flow. This method enables the effective control of liquid concentration by cyclone flow. The optimum channel structure is investigated, and a 33-fold concentration of aqueous solutions is demonstrated. Finally, the concentration device is applied to measure molybdenum ions in a river.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s44211-024-00654-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Highly sensitive quantitative analysis of liquids is required in various fields. Analytical instruments and devices such as chromatography, spectroscopic analysis, DNA sequencers, immunoassay, mass spectrometry, and microfluidic devices are utilized for this purpose. Typically, the sample volume is at the milliliter scale, while the analysis volume is at the microliter scale. Consequently, most of the sample is discarded. Therefore, a universal volume interface is required to quantitatively concentrate samples from milliliter to microliter volume. This study introduces a liquid quantitative function to the cyclone concentration method using a millimeter-scale channel, which is highly suitable for controlling liquids at the microliter scale due to its high fluidic resistance against cyclone flow. This method enables the effective control of liquid concentration by cyclone flow. The optimum channel structure is investigated, and a 33-fold concentration of aqueous solutions is demonstrated. Finally, the concentration device is applied to measure molybdenum ions in a river.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于旋流的室温毫升至微升定量液体浓缩装置。
各个领域都需要对液体进行高灵敏度的定量分析。分析仪器和设备,如色谱法、光谱分析、DNA 测序仪、免疫测定、质谱法和微流体设备等,均可用于此目的。通常情况下,样品量为毫升级,而分析量为微升级。因此,大部分样品会被丢弃。因此,需要一个通用的体积接口,将样品从毫升体积定量浓缩到微升体积。本研究利用毫米级通道为旋流浓缩法引入了液体定量功能,由于毫米级通道对旋流的流体阻力大,因此非常适合控制微升量级的液体。这种方法可以通过旋流有效控制液体浓度。对最佳通道结构进行了研究,并展示了水溶液 33 倍的浓缩效果。最后,该浓缩装置被用于测量河流中的钼离子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Sciences
Analytical Sciences 化学-分析化学
CiteScore
2.90
自引率
18.80%
发文量
232
审稿时长
1 months
期刊介绍: Analytical Sciences is an international journal published monthly by The Japan Society for Analytical Chemistry. The journal publishes papers on all aspects of the theory and practice of analytical sciences, including fundamental and applied, inorganic and organic, wet chemical and instrumental methods. This publication is supported in part by the Grant-in-Aid for Publication of Scientific Research Result of the Japanese Ministry of Education, Culture, Sports, Science and Technology.
期刊最新文献
Femtosecond Raman-induced Kerr effect spectroscopic study of the intermolecular dynamics in aqueous solutions of imidazolium hydrochloride, imidazole, sodium triazolide, and triazole: concentration dependence. Colorimetric quantification of vancomycin by highly active nitroxyl radical compounds. Room temperature quantitative liquid concentration device and application to interleukins analysis in a B-cell culture medium. Triple-template surface imprinted magnetic polymers for wide-coverage extraction of steroid hormones from human serum. Use of calcite for evaluation of spectral resolution of Raman spectrometers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1