{"title":"Ubiquitin C-terminal hydrolase L1 activation in periodontal ligament cells mediates orthodontic tooth movement via the MAPK signaling pathway.","authors":"Fu Zheng, Feifei Wang, Tong Wu, Hongyi Tang, Huazhi Li, Xinyu Cui, Cuiying Li, Jiuhui Jiang","doi":"10.1080/03008207.2024.2395998","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Periodontal ligament cells (PDLCs) play a significant role in orthodontic force induced bone remodeling. However, the molecular mechanisms by which PDLCs respond to mechanical stimuli and influence osteoclastic activities remain unclear. This study aims to investigate the role of UCHL1, a key deubiquitinating enzyme involved in protein degradation and cellular responses, in force-treated PDLCs during orthodontic tooth movement (OTM).</p><p><strong>Materials and methods: </strong>In this study, we conducted <i>in vivo</i> and <i>in vitro</i> experiments using human PDLCs and a rat model of OTM. Mechanical stress was applied to PDLCs, and UCHL1 expression was analyzed through quantitative real-time polymerase chain reaction (qPCR), Western blot, and immunofluorescence staining. UCHL1 knockdown was achieved using siRNA, and its effects on osteoclast differentiation were assessed. The role of the MAPK/ERK pathway was investigated using the MEK-specific inhibitor U0126. An animal model of OTM was established, and the impact of UCHL1 inhibitor-LDN57444 on OTM and osteoclastic activity was evaluated through micro-CT analysis, histological staining, and immunohistochemistry.</p><p><strong>Results: </strong>Mechanical force induced UCHL1 expression in PDLCs during OTM. UCHL1 knockdown downregulated the RANKL/OPG ratio in PDLCs, affecting osteoclast differentiation. LDN57444 inhibited OTM and osteoclastic activity. UCHL1 activation correlated with ERK1/2 phosphorylation in force-treated PDLCs.</p><p><strong>Conclusions: </strong>Mechanical force mediated UCHL1 activation in PDLCs promotes osteoclast differentiation via the ERK1/2 signaling pathway during OTM.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"421-432"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2024.2395998","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Periodontal ligament cells (PDLCs) play a significant role in orthodontic force induced bone remodeling. However, the molecular mechanisms by which PDLCs respond to mechanical stimuli and influence osteoclastic activities remain unclear. This study aims to investigate the role of UCHL1, a key deubiquitinating enzyme involved in protein degradation and cellular responses, in force-treated PDLCs during orthodontic tooth movement (OTM).
Materials and methods: In this study, we conducted in vivo and in vitro experiments using human PDLCs and a rat model of OTM. Mechanical stress was applied to PDLCs, and UCHL1 expression was analyzed through quantitative real-time polymerase chain reaction (qPCR), Western blot, and immunofluorescence staining. UCHL1 knockdown was achieved using siRNA, and its effects on osteoclast differentiation were assessed. The role of the MAPK/ERK pathway was investigated using the MEK-specific inhibitor U0126. An animal model of OTM was established, and the impact of UCHL1 inhibitor-LDN57444 on OTM and osteoclastic activity was evaluated through micro-CT analysis, histological staining, and immunohistochemistry.
Results: Mechanical force induced UCHL1 expression in PDLCs during OTM. UCHL1 knockdown downregulated the RANKL/OPG ratio in PDLCs, affecting osteoclast differentiation. LDN57444 inhibited OTM and osteoclastic activity. UCHL1 activation correlated with ERK1/2 phosphorylation in force-treated PDLCs.
Conclusions: Mechanical force mediated UCHL1 activation in PDLCs promotes osteoclast differentiation via the ERK1/2 signaling pathway during OTM.
期刊介绍:
The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology.
The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented.
The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including
Biochemistry
Cell and Molecular Biology
Immunology
Structural Biology
Biophysics
Biomechanics
Regenerative Medicine
The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.