Karina Erda Saninggar, Fumika Abe, Ayana Nakano, Koichi Kato
{"title":"Collagen-binding bone morphogenetic protein-2 designed for use in bone tissue engineering.","authors":"Karina Erda Saninggar, Fumika Abe, Ayana Nakano, Koichi Kato","doi":"10.4012/dmj.2024-138","DOIUrl":null,"url":null,"abstract":"<p><p>Bone tissue engineering using biodegradable porous scaffolds is a promising approach for restoring oral and maxillofacial bone defects. Recently, attempts have been made to incorporate proteins such as growth factors to create bioactive scaffolds that can engage cells to promote tissue formation. Collagen-based scaffolds containing bone morphogenetic protein-2 (BMP2) have been studied for bone formation. However, controlling the initial burst of BMP2 remains difficult. Here we designed a functional chimeric protein composed of BMP2 and a collagen-binding domain (CBD), specifically the A3 domain of von Willebrand factor, to sustain BMP2 release from collagen-based scaffolds. Based on the results of computer-based structural prediction, we prepared a chimeric protein consisting of CBD and BMP2 in this order with a peptide tag for affinity purification. The chimeric protein had a collagen-binding capacity and enhanced osteogenic differentiation of human mesenchymal stem cells. These results are consistent with insights from in silico structural prediction.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":"718-728"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental materials journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2024-138","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Bone tissue engineering using biodegradable porous scaffolds is a promising approach for restoring oral and maxillofacial bone defects. Recently, attempts have been made to incorporate proteins such as growth factors to create bioactive scaffolds that can engage cells to promote tissue formation. Collagen-based scaffolds containing bone morphogenetic protein-2 (BMP2) have been studied for bone formation. However, controlling the initial burst of BMP2 remains difficult. Here we designed a functional chimeric protein composed of BMP2 and a collagen-binding domain (CBD), specifically the A3 domain of von Willebrand factor, to sustain BMP2 release from collagen-based scaffolds. Based on the results of computer-based structural prediction, we prepared a chimeric protein consisting of CBD and BMP2 in this order with a peptide tag for affinity purification. The chimeric protein had a collagen-binding capacity and enhanced osteogenic differentiation of human mesenchymal stem cells. These results are consistent with insights from in silico structural prediction.
期刊介绍:
Dental Materials Journal is a peer review journal published by the Japanese Society for Dental Materials and Devises aiming to introduce the progress of the basic and applied sciences in dental materials and biomaterials. The dental materials-related clinical science and instrumental technologies are also within the scope of this journal. The materials dealt include synthetic polymers, ceramics, metals and tissue-derived biomaterials. Forefront dental materials and biomaterials used in developing filed, such as tissue engineering, bioengineering and artificial intelligence, are positively considered for the review as well. Recent acceptance rate of the submitted manuscript in the journal is around 30%.