Oskar Bunz, Max Diekamp, Mozhgan Bizhang, Holger Testrich, Andree Piwowarczyk
{"title":"Surface roughness associated with bacterial adhesion on dental resin-based materials.","authors":"Oskar Bunz, Max Diekamp, Mozhgan Bizhang, Holger Testrich, Andree Piwowarczyk","doi":"10.4012/dmj.2023-234","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the surface quality and bacterial adhesion properties of various dental materials, including indirect composites, veneering composites, direct composites, polyether ether ketone (PEEK), and two millable polymethyl methacrylate (PMMA). Material specimens were processed following manufacturer instructions, initially evaluated for surface roughness and Streptococcus sanguinis (S. sanguinis) adhesion. Subsequently, toothbrushing simulation was employed to simulate aging, and changes in material surfaces were assessed via roughness measurements and bacterial adhesion testing. Prior to simulated aging, direct and indirect composites exhibited the lowest roughness values. However, after the simulated toothbrushing, veneering composites displayed the highest roughness levels. Both PMMA materials demonstrated the highest S. sanguinis adhesion levels, both before and after artificial aging. Interestingly, the indirect composite material showed a reduction in bacterial adhesion following toothbrushing simulation. Surprisingly, this study did not reveal a clear correlation between roughness and bacterial adhesion.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":"621-628"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental materials journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2023-234","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the surface quality and bacterial adhesion properties of various dental materials, including indirect composites, veneering composites, direct composites, polyether ether ketone (PEEK), and two millable polymethyl methacrylate (PMMA). Material specimens were processed following manufacturer instructions, initially evaluated for surface roughness and Streptococcus sanguinis (S. sanguinis) adhesion. Subsequently, toothbrushing simulation was employed to simulate aging, and changes in material surfaces were assessed via roughness measurements and bacterial adhesion testing. Prior to simulated aging, direct and indirect composites exhibited the lowest roughness values. However, after the simulated toothbrushing, veneering composites displayed the highest roughness levels. Both PMMA materials demonstrated the highest S. sanguinis adhesion levels, both before and after artificial aging. Interestingly, the indirect composite material showed a reduction in bacterial adhesion following toothbrushing simulation. Surprisingly, this study did not reveal a clear correlation between roughness and bacterial adhesion.
期刊介绍:
Dental Materials Journal is a peer review journal published by the Japanese Society for Dental Materials and Devises aiming to introduce the progress of the basic and applied sciences in dental materials and biomaterials. The dental materials-related clinical science and instrumental technologies are also within the scope of this journal. The materials dealt include synthetic polymers, ceramics, metals and tissue-derived biomaterials. Forefront dental materials and biomaterials used in developing filed, such as tissue engineering, bioengineering and artificial intelligence, are positively considered for the review as well. Recent acceptance rate of the submitted manuscript in the journal is around 30%.