Robust Path Planning via Learning from Demonstrations for Robotic Catheters in Deformable Environments.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Engineering Pub Date : 2024-08-29 DOI:10.1109/TBME.2024.3452034
Zhen Li, Chiara Lambranzi, Di Wu, Alice Segato, Federico De Marco, Emmanuel Vander Poorten, Jenny Dankelman, Elena De Momi
{"title":"Robust Path Planning via Learning from Demonstrations for Robotic Catheters in Deformable Environments.","authors":"Zhen Li, Chiara Lambranzi, Di Wu, Alice Segato, Federico De Marco, Emmanuel Vander Poorten, Jenny Dankelman, Elena De Momi","doi":"10.1109/TBME.2024.3452034","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Navigation through tortuous and deformable vessels using catheters with limited steering capability underscores the need for reliable path planning. State-of-the-art path planners do not fully account for the deformable nature of the environment.</p><p><strong>Methods: </strong>This work proposes a robust path planner via a learning from demonstrations method, named Curriculum Generative Adversarial Imitation Learning (C-GAIL). This path planning framework takes into account the interaction between steerable catheters and vessel walls and the deformable property of vessels.</p><p><strong>Results: </strong>In-silico comparative experiments show that the proposed network achieves a 38% higher success rate in static environments and 17% higher in dynamic environments compared to a state-of-the-art approach based on GAIL. In-vitro validation experiments indicate that the path generated by the proposed C-GAIL path planner achieves a targeting error of 1.26 ±0.55mm and a tracking error of 5.18 ±3.48mm. These results represent improvements of 41% and 40% over the conventional centerline-following technique for targeting error and tracking error, respectively.</p><p><strong>Conclusion: </strong>The proposed C-GAIL path planner outperforms the state-of-the-art GAIL approach. The in-vitro validation experiments demonstrate that the path generated by the proposed C-GAIL path planner aligns better with the actual steering capability of the pneumatic artificial muscle-driven catheter utilized in this study. Therefore, the proposed approach can provide enhanced support to the user in navigating the catheter towards the target with greater accuracy, effectively meeting clinical accuracy requirements.</p><p><strong>Significance: </strong>The proposed path planning framework exhibits superior performance in managing uncertainty associated with vessel deformation, thereby resulting in lower tracking errors.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2024.3452034","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Navigation through tortuous and deformable vessels using catheters with limited steering capability underscores the need for reliable path planning. State-of-the-art path planners do not fully account for the deformable nature of the environment.

Methods: This work proposes a robust path planner via a learning from demonstrations method, named Curriculum Generative Adversarial Imitation Learning (C-GAIL). This path planning framework takes into account the interaction between steerable catheters and vessel walls and the deformable property of vessels.

Results: In-silico comparative experiments show that the proposed network achieves a 38% higher success rate in static environments and 17% higher in dynamic environments compared to a state-of-the-art approach based on GAIL. In-vitro validation experiments indicate that the path generated by the proposed C-GAIL path planner achieves a targeting error of 1.26 ±0.55mm and a tracking error of 5.18 ±3.48mm. These results represent improvements of 41% and 40% over the conventional centerline-following technique for targeting error and tracking error, respectively.

Conclusion: The proposed C-GAIL path planner outperforms the state-of-the-art GAIL approach. The in-vitro validation experiments demonstrate that the path generated by the proposed C-GAIL path planner aligns better with the actual steering capability of the pneumatic artificial muscle-driven catheter utilized in this study. Therefore, the proposed approach can provide enhanced support to the user in navigating the catheter towards the target with greater accuracy, effectively meeting clinical accuracy requirements.

Significance: The proposed path planning framework exhibits superior performance in managing uncertainty associated with vessel deformation, thereby resulting in lower tracking errors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在可变形环境中,通过从演示中学习机器人导管的鲁棒路径规划。
目的:使用转向能力有限的导管在曲折变形的血管中进行导航,需要可靠的路径规划。最先进的路径规划器并没有充分考虑到环境的可变形性:方法:这项研究通过一种名为 "课程生成对抗模仿学习"(C-GAIL)的示范学习方法,提出了一种稳健的路径规划方法。该路径规划框架考虑了可转向导管与血管壁之间的相互作用以及血管的可变形特性:室内对比实验表明,与基于 GAIL 的先进方法相比,所提出的网络在静态环境中的成功率提高了 38%,在动态环境中提高了 17%。体外验证实验表明,拟议的 C-GAIL 路径规划器生成的路径实现了 1.26 ±0.55 毫米的瞄准误差和 5.18 ±3.48 毫米的跟踪误差。这些结果表明,与传统的中心线跟踪技术相比,瞄准误差和跟踪误差分别提高了 41% 和 40%:结论:所提出的 C-GAIL 路径规划器优于最先进的 GAIL 方法。体外验证实验表明,拟议的 C-GAIL 路径规划器生成的路径更符合本研究中使用的气动人工肌肉驱动导管的实际转向能力。因此,所提出的方法可以为用户提供更强的支持,帮助其更准确地将导管导向目标,从而有效满足临床精度要求:意义:所提出的路径规划框架在管理与血管变形相关的不确定性方面表现出色,从而降低了跟踪误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Biomedical Engineering Handling Editors Information IEEE Engineering in Medicine and Biology Society Information IEEE Transactions on Biomedical Engineering Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1