{"title":"Comparison of Performance of Large Language Models on Lung-RADS Related Questions.","authors":"Eren Çamur, Turay Cesur, Yasin Celal Güneş","doi":"10.1200/GO.24.00200","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates LLM integration in interpreting Lung-RADS for lung cancer screening, highlighting their innovative role in enhancing radiological practice. Our findings reveal that Claude 3 Opus and Perplexity achieved a 96% accuracy rate, outperforming other models.</p>","PeriodicalId":14806,"journal":{"name":"JCO Global Oncology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Global Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/GO.24.00200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates LLM integration in interpreting Lung-RADS for lung cancer screening, highlighting their innovative role in enhancing radiological practice. Our findings reveal that Claude 3 Opus and Perplexity achieved a 96% accuracy rate, outperforming other models.