Synthesis, Characterization, Investigation of DNA Interactions and Biological Evaluation of Co(II), Ni(II), Cu(II) and Zn(II) Complexes with Newly Synthesized 2-methoxy 5-trifluoromethyl benzenamine Schiff Base.
{"title":"Synthesis, Characterization, Investigation of DNA Interactions and Biological Evaluation of Co(II), Ni(II), Cu(II) and Zn(II) Complexes with Newly Synthesized 2-methoxy 5-trifluoromethyl benzenamine Schiff Base.","authors":"M Swathi, Dasari Ayodhya, Shivaraj","doi":"10.1007/s10895-024-03888-2","DOIUrl":null,"url":null,"abstract":"<p><p>The biologically active and thermally stable bivalent Co(II), Ni(II), Cu(II), and Zn(II) complexes (C1, C2, C3, and C4) of novel Schiff base ligand [(5-trifluoromethyl-2-methoxyphenylamino)methyl)-4,6-diiodophenol (L)] have been synthesized. The structural analysis of these complexes have been carried out by elemental analysis, <sup>1</sup>H-NMR, FTIR, ESI mass, UV-visible, ESR, TGA techniques and magnetic measurements. The obtained results were confirmed as square planar geometry for Ni(II) and Cu(II) complexes, whereas octahedral geometry for Co(II) and Zn(II) complexes. The geometry optimized structures were developed by employing CHEM 3D software. The DNA binding interaction studies such as UV-vis absorption, viscosity, and fluorescence studies have been confirmed that the mode of binding of complexes with DNA is an intercalative binding. The DNA cleavage studies revealed that all the complexes are found to be potent to cleave the DNA into Form I & II. The in-vitro pathological studies of all the complexes against various microbial strains (Gram + and Gram -), revealed that Cu(II) complexes are more potent compared to other complexes and Schiff base. The anti diabetic activity studies revealed that the Cu(II) complex exhibited slightly higher activity than Co(II), Ni(II), and Zn(II) complexes. The results of antioxidant activity by DPPH method, suggested that the Cu(II) complex has higher activity and comparable with the standard compounds.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03888-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The biologically active and thermally stable bivalent Co(II), Ni(II), Cu(II), and Zn(II) complexes (C1, C2, C3, and C4) of novel Schiff base ligand [(5-trifluoromethyl-2-methoxyphenylamino)methyl)-4,6-diiodophenol (L)] have been synthesized. The structural analysis of these complexes have been carried out by elemental analysis, 1H-NMR, FTIR, ESI mass, UV-visible, ESR, TGA techniques and magnetic measurements. The obtained results were confirmed as square planar geometry for Ni(II) and Cu(II) complexes, whereas octahedral geometry for Co(II) and Zn(II) complexes. The geometry optimized structures were developed by employing CHEM 3D software. The DNA binding interaction studies such as UV-vis absorption, viscosity, and fluorescence studies have been confirmed that the mode of binding of complexes with DNA is an intercalative binding. The DNA cleavage studies revealed that all the complexes are found to be potent to cleave the DNA into Form I & II. The in-vitro pathological studies of all the complexes against various microbial strains (Gram + and Gram -), revealed that Cu(II) complexes are more potent compared to other complexes and Schiff base. The anti diabetic activity studies revealed that the Cu(II) complex exhibited slightly higher activity than Co(II), Ni(II), and Zn(II) complexes. The results of antioxidant activity by DPPH method, suggested that the Cu(II) complex has higher activity and comparable with the standard compounds.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.