Cardiac fat adipocytes: An optimized protocol for isolation of ready-to-use mature adipocytes from human pericardial adipose tissue

IF 4.9 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of molecular and cellular cardiology Pub Date : 2024-08-28 DOI:10.1016/j.yjmcc.2024.08.006
Stefano Quarta , Giuseppe Santarpino , Maria Annunziata Carluccio , Nadia Calabriso , Francesco Cardetta , Laura Siracusa , Tonia Strano , Ilaria Palamà , Gabriella Leccese , Francesco Visioli , Marika Massaro
{"title":"Cardiac fat adipocytes: An optimized protocol for isolation of ready-to-use mature adipocytes from human pericardial adipose tissue","authors":"Stefano Quarta ,&nbsp;Giuseppe Santarpino ,&nbsp;Maria Annunziata Carluccio ,&nbsp;Nadia Calabriso ,&nbsp;Francesco Cardetta ,&nbsp;Laura Siracusa ,&nbsp;Tonia Strano ,&nbsp;Ilaria Palamà ,&nbsp;Gabriella Leccese ,&nbsp;Francesco Visioli ,&nbsp;Marika Massaro","doi":"10.1016/j.yjmcc.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>A better understanding of the pathophysiology of cardiac fat depots is crucial to describe their role in the development of cardiovascular diseases. To this end, we have developed a method to isolate mature fat cells from the pericardial adipose tissue (PAT), the most accessible cardiac fat depot during cardiac surgery. Using enzymatic isolation, we were able to successfully obtain mature fat cells together with the corresponding cells of the stromal vascular fraction (SVF). We subjected the PAT adipocytes to thorough morphological and molecular characterization, including detailed fatty acid profiling, and simultaneously investigated their reactivity to external stimuli. Our approach resulted in highly purified fat cells with sustained viability for up to 72 h after explantation. Remarkably, these adipocytes responded to multiple challenges, including pro-inflammatory and metabolic stimuli, indicating their potential to trigger a pro-inflammatory response and modulate endothelial cell behavior. Furthermore, we have created conditions to maintain whole PAT in culture and preserve their viability and reactivity to external stimuli. The efficiency of cell recovery combined with minimal dedifferentiation underscores the promise for future applications as a personalized tool for screening and assessing individual patient responses to drugs and supplements or nutraceuticals.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"196 ","pages":"Pages 12-25"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002228282400141X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

A better understanding of the pathophysiology of cardiac fat depots is crucial to describe their role in the development of cardiovascular diseases. To this end, we have developed a method to isolate mature fat cells from the pericardial adipose tissue (PAT), the most accessible cardiac fat depot during cardiac surgery. Using enzymatic isolation, we were able to successfully obtain mature fat cells together with the corresponding cells of the stromal vascular fraction (SVF). We subjected the PAT adipocytes to thorough morphological and molecular characterization, including detailed fatty acid profiling, and simultaneously investigated their reactivity to external stimuli. Our approach resulted in highly purified fat cells with sustained viability for up to 72 h after explantation. Remarkably, these adipocytes responded to multiple challenges, including pro-inflammatory and metabolic stimuli, indicating their potential to trigger a pro-inflammatory response and modulate endothelial cell behavior. Furthermore, we have created conditions to maintain whole PAT in culture and preserve their viability and reactivity to external stimuli. The efficiency of cell recovery combined with minimal dedifferentiation underscores the promise for future applications as a personalized tool for screening and assessing individual patient responses to drugs and supplements or nutraceuticals.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心脂脂肪细胞:从人体心包脂肪组织中分离即用型成熟脂肪细胞的优化方案。
更好地了解心脏脂肪库的病理生理学对于描述它们在心血管疾病发展中的作用至关重要。为此,我们开发了一种从心包脂肪组织(PAT)中分离成熟脂肪细胞的方法。通过酶分离法,我们成功地获得了成熟脂肪细胞以及基质血管部分(SVF)的相应细胞。我们对 PAT 脂肪细胞进行了全面的形态和分子鉴定,包括详细的脂肪酸谱分析,并同时研究了它们对外界刺激的反应性。我们的方法得到了高度纯化的脂肪细胞,它们在移植后的 72 小时内仍具有持续的存活能力。值得注意的是,这些脂肪细胞对包括促炎和新陈代谢刺激在内的多种挑战做出了反应,这表明它们具有引发促炎反应和调节内皮细胞行为的潜力。此外,我们还创造了条件,在培养过程中维持整个 PAT,并保持其活力和对外部刺激的反应性。细胞恢复的高效性与最小的去分化相结合,凸显了它未来作为个性化工具用于筛选和评估个体患者对药物、补充剂或营养保健品的反应的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
171
审稿时长
42 days
期刊介绍: The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.
期刊最新文献
Editorial Board PERM1 regulates mitochondrial energetics through O-GlcNAcylation in the heart Corrigendum to "PGE2 protects against heart failure through inhibiting TGF-β1 synthesis in cardiomyocytes and crosstalk between TGF-β1 and GRK2" [Journal of Molecular and Cellular Cardiology. 172(2022) 63-77]. Retraction notice to “The novel antibody fusion protein rhNRG1-HER3i promotes heart regeneration by enhancing NRG1-ERBB4 signaling pathway” [Journal of Molecular and Cellular Cardiology 187 (2023) 26–37] Exercise training attenuates cardiac dysfunction induced by excessive sympathetic activation through an AMPK-KLF4-FMO2 axis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1