Photodynamic therapy on mRNA levels in bacteria.

IF 2.1 4区 医学 Q3 ENGINEERING, BIOMEDICAL Lasers in Medical Science Pub Date : 2024-08-31 DOI:10.1007/s10103-024-04179-9
Bruno Ricardo Barreto Pires, Flavia de Paoli, Andre Luiz Mencalha, Adenilson de Souza da Fonseca
{"title":"Photodynamic therapy on mRNA levels in bacteria.","authors":"Bruno Ricardo Barreto Pires, Flavia de Paoli, Andre Luiz Mencalha, Adenilson de Souza da Fonseca","doi":"10.1007/s10103-024-04179-9","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial photodynamic therapy (aPDT) has shown efficacy in inactivating different bacterial species by photosensitizer-induced free radical production. Despite aPDT is considered unable to cause resistant strains, enzymatic pathways for detoxification of reactive oxygen species and transmembrane photosensitizer efflux systems could cause resistance to aPDT. Resistance mechanisms can be evaluated by measurement of mRNA from by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Thus, the aim of this study was to access the mRNA level data obtained by RT-qPCR in bacterial cells submitted to photodynamic therapy. Studies performed on mRNA levels in bacteria after PDT were assessed on MEDLINE/Pubmed. The mRNA levels from genes related to various functions have been successfully evaluated in both Gram-positive and -negative bacteria after aPDT by RT-qPCR. Such an approach has improved the understanding of aPDT-induced effects, and reinforced the effectiveness of aPDT on bacteria, which can cause infections in different human tissues.</p>","PeriodicalId":17978,"journal":{"name":"Lasers in Medical Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Medical Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10103-024-04179-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial photodynamic therapy (aPDT) has shown efficacy in inactivating different bacterial species by photosensitizer-induced free radical production. Despite aPDT is considered unable to cause resistant strains, enzymatic pathways for detoxification of reactive oxygen species and transmembrane photosensitizer efflux systems could cause resistance to aPDT. Resistance mechanisms can be evaluated by measurement of mRNA from by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Thus, the aim of this study was to access the mRNA level data obtained by RT-qPCR in bacterial cells submitted to photodynamic therapy. Studies performed on mRNA levels in bacteria after PDT were assessed on MEDLINE/Pubmed. The mRNA levels from genes related to various functions have been successfully evaluated in both Gram-positive and -negative bacteria after aPDT by RT-qPCR. Such an approach has improved the understanding of aPDT-induced effects, and reinforced the effectiveness of aPDT on bacteria, which can cause infections in different human tissues.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光动力疗法对细菌中 mRNA 水平的影响。
抗菌光动力疗法(aPDT)通过光敏剂诱导自由基的产生,显示出了灭活不同细菌种类的功效。尽管 aPDT 被认为不会导致耐药菌株,但活性氧解毒酶途径和跨膜光敏剂外排系统可能会导致对 aPDT 产生耐药性。抗药性机制可通过定量反转录聚合酶链式反应(RT-qPCR)测定 mRNA 来评估。因此,本研究旨在通过 RT-qPCR 获取接受光动力疗法的细菌细胞中的 mRNA 水平数据。在 MEDLINE/Pubmed 上评估了光动力疗法后细菌中 mRNA 水平的研究。通过 RT-qPCR 成功评估了光动力疗法后革兰氏阳性和阴性细菌中与各种功能相关的基因的 mRNA 水平。这种方法提高了人们对aPDT诱导效应的认识,并加强了aPDT对细菌的有效性,而细菌可导致不同人体组织的感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lasers in Medical Science
Lasers in Medical Science 医学-工程:生物医学
CiteScore
4.50
自引率
4.80%
发文量
192
审稿时长
3-8 weeks
期刊介绍: Lasers in Medical Science (LIMS) has established itself as the leading international journal in the rapidly expanding field of medical and dental applications of lasers and light. It provides a forum for the publication of papers on the technical, experimental, and clinical aspects of the use of medical lasers, including lasers in surgery, endoscopy, angioplasty, hyperthermia of tumors, and photodynamic therapy. In addition to medical laser applications, LIMS presents high-quality manuscripts on a wide range of dental topics, including aesthetic dentistry, endodontics, orthodontics, and prosthodontics. The journal publishes articles on the medical and dental applications of novel laser technologies, light delivery systems, sensors to monitor laser effects, basic laser-tissue interactions, and the modeling of laser-tissue interactions. Beyond laser applications, LIMS features articles relating to the use of non-laser light-tissue interactions.
期刊最新文献
Photobiomodulation effects on neuronal transdifferentiation of immortalized adipose-derived mesenchymal stem cells. Antifungal efficacy of photodynamic therapy on Cryptococcus and Candida species is enhanced by Streptomyces spp. extracts in vitro. Optimizing near infrared laser irradiation and photosensitizer accumulation period for indocyanine green-mediated photodynamic therapy in breast cancer xenografts: a focus on treatment and characterization. Photobiomodulation using red and infrared spectrum light emitting-diode (LED) for the healing of diabetic foot ulcers: a controlled randomized clinical trial. Blue light inhibits cell viability and proliferation in hair follicle stem cells and dermal papilla cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1