Sergio Pandolfi, Salvatore Chirumbolo, Marianno Franzini, Umberto Tirelli, Luigi Valdenassi
{"title":"Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders.","authors":"Sergio Pandolfi, Salvatore Chirumbolo, Marianno Franzini, Umberto Tirelli, Luigi Valdenassi","doi":"10.4103/mgr.MEDGASRES-D-23-00013","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases (CVDs) represent a major concern for human health worldwide. Emergencies in this field include wide repertories of studies dealing primarily with CVD prevention. In addition to dietary habits and lifestyles, medical knowledge is fully needed to improve public educational programs toward cardiovascular risk factors and to enrich the endowment of pharmaceutical options and therapies to address CVDs, particularly for ischemic damage due to an impairment in the endothelial-myocardial relationship. Because ozone is a stimulator of the endothelial nitric oxide synthase/nitric oxide pathway, ozone therapy has been widely demonstrated to have the ability to counteract endothelial-cardiac disorders, providing a novel straightforward opportunity to reduce the impact of CVDs, including atrial fibrillation. In this review, we attempt to establish a state-of-the-art method for the use of ozone in CVD, suggesting that future remarks be addressed to provide fundamental insights into this issue. The purpose of this study was to highlight the role of ozone in the adjunctive medical treatment of cardiovascular pathologies such as acute myocardial infarction due to ischemic disorders.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":" ","pages":"36-43"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515079/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/mgr.MEDGASRES-D-23-00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular diseases (CVDs) represent a major concern for human health worldwide. Emergencies in this field include wide repertories of studies dealing primarily with CVD prevention. In addition to dietary habits and lifestyles, medical knowledge is fully needed to improve public educational programs toward cardiovascular risk factors and to enrich the endowment of pharmaceutical options and therapies to address CVDs, particularly for ischemic damage due to an impairment in the endothelial-myocardial relationship. Because ozone is a stimulator of the endothelial nitric oxide synthase/nitric oxide pathway, ozone therapy has been widely demonstrated to have the ability to counteract endothelial-cardiac disorders, providing a novel straightforward opportunity to reduce the impact of CVDs, including atrial fibrillation. In this review, we attempt to establish a state-of-the-art method for the use of ozone in CVD, suggesting that future remarks be addressed to provide fundamental insights into this issue. The purpose of this study was to highlight the role of ozone in the adjunctive medical treatment of cardiovascular pathologies such as acute myocardial infarction due to ischemic disorders.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.