Cascade Hydroxyl Radical-Generating and Ferroptosis-Inducing Nanofiber System for the Therapy of Oral Squamous Cell Carcinoma.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecules Pub Date : 2024-08-22 DOI:10.3390/molecules29163964
JiHye Park, Qiaojun Hao, Da In Jeong, Hyun-Jin Kim, Sungyun Kim, Song Yi Lee, Seongnam Chu, Usok Hyun, Hyun-Jong Cho
{"title":"Cascade Hydroxyl Radical-Generating and Ferroptosis-Inducing Nanofiber System for the Therapy of Oral Squamous Cell Carcinoma.","authors":"JiHye Park, Qiaojun Hao, Da In Jeong, Hyun-Jin Kim, Sungyun Kim, Song Yi Lee, Seongnam Chu, Usok Hyun, Hyun-Jong Cho","doi":"10.3390/molecules29163964","DOIUrl":null,"url":null,"abstract":"<p><p>Nanofiber (NF) membrane systems that can provide cascade catalytic reaction and ferroptosis induction were developed for oral cancer therapy. Glucose oxidase (GOx) and aminoferrocene (AF) were introduced into the NF system for glucose deprivation/H<sub>2</sub>O<sub>2</sub> generation and OH radical generation, respectively. GOx offers starvation therapy and AF (including iron) provides chemodynamic therapy/ferroptosis for combating oral cancer. GOx (water-soluble) and AF (poorly water-soluble) molecules were successfully entrapped in the NF membrane via an electrospinning process. GOx and AF were incorporated into the polyvinyl alcohol (PVA)-based NF, resulting in PVA/GOx/AF NF with fast disintegration and immediate drug-release properties. In oral squamous cell carcinoma (YD-9 cells), the PVA/GOx/AF NF group exhibited higher cytotoxicity, antiproliferation potential, cellular ROS level, apoptosis induction, lipid ROS level, and malondialdehyde level compared to the other NF groups. The electrospun PVA/GOx/AF NF can be directly applied to oral cancer without causing pain, offering starvation/chemodynamic therapy and ferroptosis induction.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29163964","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofiber (NF) membrane systems that can provide cascade catalytic reaction and ferroptosis induction were developed for oral cancer therapy. Glucose oxidase (GOx) and aminoferrocene (AF) were introduced into the NF system for glucose deprivation/H2O2 generation and OH radical generation, respectively. GOx offers starvation therapy and AF (including iron) provides chemodynamic therapy/ferroptosis for combating oral cancer. GOx (water-soluble) and AF (poorly water-soluble) molecules were successfully entrapped in the NF membrane via an electrospinning process. GOx and AF were incorporated into the polyvinyl alcohol (PVA)-based NF, resulting in PVA/GOx/AF NF with fast disintegration and immediate drug-release properties. In oral squamous cell carcinoma (YD-9 cells), the PVA/GOx/AF NF group exhibited higher cytotoxicity, antiproliferation potential, cellular ROS level, apoptosis induction, lipid ROS level, and malondialdehyde level compared to the other NF groups. The electrospun PVA/GOx/AF NF can be directly applied to oral cancer without causing pain, offering starvation/chemodynamic therapy and ferroptosis induction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于治疗口腔鳞状细胞癌的级联羟基自由基生成和铁突变诱导纳米纤维系统
为口腔癌治疗开发了可提供级联催化反应和铁变态反应诱导的纳米纤维(NF)膜系统。葡萄糖氧化酶(GOx)和氨基二茂铁(AF)被引入 NF 系统,分别用于葡萄糖剥夺/H2O2 生成和 OH 自由基生成。葡萄糖氧化酶提供饥饿疗法,而氨基二茂铁(包括铁)则提供化学动力疗法/铁变态反应,以防治口腔癌。通过电纺丝工艺,GOx(水溶性)和 AF(弱水溶性)分子成功地被包裹在 NF 膜中。将 GOx 和 AF 与基于聚乙烯醇(PVA)的 NF 结合在一起,制成了具有快速崩解和立即释药特性的 PVA/GOx/AF NF。在口腔鳞状细胞癌(YD-9 细胞)中,与其他 NF 组相比,PVA/GOx/AF NF 组具有更高的细胞毒性、抗增殖潜力、细胞 ROS 水平、凋亡诱导、脂质 ROS 水平和丙二醛水平。电纺 PVA/GOx/AF NF 可直接应用于口腔癌,不会造成疼痛,提供饥饿/化学动力疗法和铁凋亡诱导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
期刊最新文献
Self-Healable, Transparent, Biodegradable, and Shape Memorable Polyurethanes Derived from Carbon Dioxide-Based Diols S-(+)-Carvone, a Monoterpene with Potential Anti-Neurodegenerative Activity—In Vitro, In Vivo and Ex Vivo Studies Calculation of Some Low-Lying Electronic Excitations of Barium Monofluoride Using the Equation of Motion (EOM)-CC3 Method with an Effective Core Potential Approach Comprehensive Mapping of Cyclotides from Viola philippica by Using Mass Spectrometry-Based Strategy Anti-Inflammatory Effects of the Combined Treatment of Resveratrol- and Protopanaxadiol-Enriched Rice Seed Extract on Lipopolysaccharide-Stimulated RAW264.7 Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1