The journal retracts the publication "Wogonin Suppresses the Activity of Matrix Metalloproteinase-9 and Inhibits Migration and Invasion in Human Hepatocellular Carcinoma" [...].
The journal retracts the publication "Wogonin Suppresses the Activity of Matrix Metalloproteinase-9 and Inhibits Migration and Invasion in Human Hepatocellular Carcinoma" [...].
Herein, we disclose a highly efficient pathway toward 3-selenylated chromone derivatives via electrosynthesis domino C(sp2)-H bond selenylation/cyclization/deamination of 2-hydroxyaryl enaminones with diselenides. This method showed mild conditions, easy operation, a wide substrate scope, and good functional group tolerance. Furthermore, this electrosynthesis strategy was amenable to scaling up the reaction. Additionally, the preliminary experiments revealed that this reaction probably proceeded via a cation pathway instead of a radical pathway.
Carboxymethyl hydroxypropyl cellulose (CMHPC) combines the advantages of both carboxymethyl and hydroxypropyl substitutions, exhibiting superior solubility, viscosity characteristics, and enhanced salt tolerance compared to carboxymethyl cellulose (CMC). This study presents an optimized synthesis route for CMHPC through homogeneous hydroxypropylation of CMC under alkaline conditions. The effects of key reaction parameters, including propylene oxide amount and reaction time, on the structure and resulting properties were systematically investigated. The resulting CMHPC were comprehensively characterized using FTIR, solid state 13C NMR, and scanning electron microscopy (SEM), etc., confirming the successful hydroxypropyl group incorporation and morphological changes. In our findings, the suitable concentrations for NaOH and CMC were 5% and 4%, respectively, which could balance the yield and solution fluidity. CMHPC exhibited a much faster dissolution speed (3-5 min) than that of CMC (>30 min), indicating markedly enhanced hydrophilicity and solubility. Moreover, CMHPC also exhibited improved salt and acidity tolerance due to the steric hindrance of hydroxypropyl groups. CMHPC was also used to modify recycled coarse aggregate (RCA), and the results indicated that CMHPC could enhance the surface compactness and structural integrity of RCA. Moreover, CMHPC effectively improved the water resistance of RCA by constructing a physical barrier and optimizing the pore structure of the aggregate. This research provides valuable insights into the fabrication of modified cellulose ethers in homogeneous systems and offers a practical pathway for producing high-value cellulose derivatives with tailored properties, particularly for potential construction applications.
A computational study of the mechanism of asymmetric hydrogenation of γ-keto acids with the Ni(S,S)-QuinoxP* system was conducted. The main steps of the reaction mechanism were determined, including the formation of the NiH(S,S-QuinoxP*)+ complex starting from a γ-keto acid molecule and the involvement of the hydrogen "metathesis" step. The rate-limiting and stereo-determining step of the reaction was identified as the transfer of a hydrogen atom from the catalytic particle to the carbonyl group of the substrate molecule. The stereochemical outcome of the process was calculated. The influence of weak interactions on the stereoselectivity of the process was demonstrated using NCI and sobEDAw analyses.
The valorization of agri-food residues is crucial for advancing circular bioeconomy strategies and mitigating environmental impacts. Turnip greens (Brassica rapa subsp. sylvestris) are a traditional vegetable cultivated in southern Italy. While the edible portions include flower sprouts, buds, and young leaves, the more leathery leaves and stems are typically discarded. These wastes represent valuable sources of compounds with antioxidant and antimicrobial potential. This study aims to develop the extraction of phenolic compounds from turnip green residues using two techniques: silent maceration and ultrasound-assisted extraction (UAE). Ethanol was selected over methanol as a food-safe alternative solvent, with preliminary tests confirming equivalent efficiency. A Design of Experiments (DoE) approach was applied to both leaves and stems to assess the effects of solvent composition, solvent-to-matrix ratio, and extraction time on Total Phenolic Content and Trolox Equivalent Antioxidant Capacity. DoE results identified UAE as the most effective method for stems, while for leaves, the solvent-to-dry-mass ratio was the key parameter. HPLC-DAD analysis was performed to identify and quantify the phenolic acids in selected extracts. The antibacterial activity of these extracts against biofilms of six pathogenic strains was evaluated using crystal violet and MTT assays, confirming efficacy in both biofilm formation and mature stages.
The widespread occurrence of pharmaceutical residues in aquatic environments necessitates the development of advanced porous materials for efficient remediation. This study investigates the adsorption mechanisms of ibuprofen and atenolol within the high-silica zeolite Y. Batch adsorption experiments demonstrated significant uptake, with loading capacities of 191.6 mg/g for ibuprofen and 273.0 mg/g for atenolol, confirming the material's effectiveness. Using a combination of neutron and X-ray powder diffraction, complemented by Rietveld refinement and simulated annealing algorithms, we achieved the exact localization of the guest molecules. While the pristine zeolite maintains cubic symmetry Fd3¯, the incorporation of pharmaceutical molecules induces significant residual nuclear density and anisotropic lattice distortions. To accurately model these perturbations, a systematic symmetry reduction to the acentric triclinic space group F1 was implemented. This approach enabled an ab initio refinement of the structure, revealing that drug uptake of each guest is governed by distinct chemical drivers. Ibuprofen is stabilized via steric confinement and long-range dispersive interactions. In contrast, atenolol stability is governed by electrostatic charge compensation within the zeolitic voids. Our results suggest that the final adsorption geometry is dictated by the spatial orientation of functional groups and host-guest proximity rather than molecular chirality. These results provide a microscopic model describing the fundamental host-guest interactions in FAU zeolites. This structural understanding is an essential step towards the potential use of zeolitic materials in environmental remediation and complex guest sequestration.
The journal retracts the article titled, "TTF1, in the Form of Nanoparticles, Inhibits Angiogenesis, Cell Migration and Cell Invasion In Vitro and In Vivo in Human Hepatoma through STAT3 Regulation" [...].
Shape-stabilized phase change materials (SSPCMs) have been a promising thermal energy storage (TES) solution to combine the high energy density of solid-to-liquid (SL) PCMs and the structural stability of solid-solid PCMs. Although polymeric matrices have been used for their reduced cost and ease of processability, few have evaluated the use of crosslinked natural rubber (NR). In this study, we evaluate by differential scanning calorimetry (DSC) the preparation of room-temperature tailorable SSCPMs by the design of NR matrices with different crosslink density vulcanized by dicumyl peroxide (DCP) or sulphur, with special focus on the quantification of the content of PCM. The results indicate that the amount of PCM stable in the NR matrix is low, with PCM contents between 16 and 24% and enthalpies between 16 and 20 J·g-1. Likewise, it is well-known that thermophysical properties of the PCMs vary upon confinement in a small-scale porous matrix. The confinement of the PCM in the rubber network results in a measured enthalpy below the expected value, and a melting point depression of up to 23.6 °C, dependent on crosslink density. These results highlight the structural complexity of NR-PCM composites and the need for further investigation.
The global food industry is undergoing a major shift driven by increasing consumer demand for clean-label and naturally preserved foods. Fresh pasta is highly vulnerable to fungal damage because of its high water activity (aw > 0.85), typically ranging between 0.92 and 0.97, moderate to near-neutral pH (around 5.0-7.0), and nutrient-rich composition, all of which create favorable conditions for fungal growth during refrigeration, mainly by genera such as Penicillium and Aspergillus. Fungal contamination results in significant economic losses due to reduced product quality and poses potential health risks associated with mycotoxin production. Although conventional chemical preservatives are relatively effective in preventing spoilage, their use conflicts with clean-label trends and faces growing regulatory and consumer scrutiny. In this context, antifungal lactic acid bacteria (LAB) have emerged as a promising natural alternative for biopreservation. Several LAB strains, particularly those isolated from cereal-based environments (e.g., Lactobacillus plantarum and L. amylovorus), produce a broad spectrum of antifungal metabolites, including organic acids, phenylalanine-derived acids, cyclic dipeptides, and volatile compounds. These metabolites act synergistically to inhibit fungal growth through multiple mechanisms, such as cytoplasmic acidification, energy depletion, and membrane disruption. However, the application of LAB in fresh pasta production requires overcoming several challenges, including the scale-up from laboratory to industrial processes, the maintenance of metabolic activity within the complex pasta matrix, and the preservation of desirable sensory attributes. Furthermore, regulatory approval (GRAS/QPS status), economic feasibility, and effective consumer communication are crucial for successful commercial implementation. This review analyzes studies published over the past decade on fresh pasta spoilage and the antifungal activity of lactic acid bacteria (LAB), highlighting the progressive refinement of LAB-based biopreservation strategies. The literature demonstrates a transition from early descriptive studies to recent research focused on strain-specific mechanisms and technological integration. Overall, LAB-mediated biopreservation emerges as a sustainable, clean-label approach for extending the shelf life and safety of fresh pasta, with future developments relying on targeted strain selection and synergistic preservation strategies.
Li3PO4 is a promising raw material for the low-cost synthesis of high-performance LiFePO4. Reactive crystallization from low-concentration lithium-rich brine is a key process for the efficient preparation of high-quality Li3PO4 products. The effect of operating conditions (temperature/supersaturation/impurities/ultrasonic) on the induction time was investigated using a focused beam reflectance measurement. The evaluation of the primary nucleation, growth kinetics, and parameters for the extraction of Li3PO4 from low-concentration lithium-rich brine was conducted using an induction time method. The dominant mechanisms at different stages were inferred through online monitoring of the particle size distribution during the Li3PO4 crystallization process. Results show that induction time decreases with increasing operating conditions (temperature/supersaturation/ultrasonic frequency), indicating that their increases all promote nucleation. Impurities (NaCl/KCl) did not significantly affect the induction time, whereas Na2SO4 and Na2B4O7 significantly increased it, with Na2B4O7 showing the most notable effect. Classical nucleation theory was applied to determine kinetic parameters (nucleation activation energy/interfacial tension/contact angle/critical nucleus size/surface entropy factor). Results indicate that Li3PO4 mainly nucleates through heterogeneous nucleation, with a temperature increase weakening the role of heterogeneous nucleation. Fitted models indicate that Li3PO4 predominantly follows the secondary nucleation and spiral growth mechanism. Our findings are crucial for crystallization design and control in producing high-quality Li3PO4 from lithium-rich brines.

