Brain age prediction via cross-stratified ensemble learning

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2024-08-29 DOI:10.1016/j.neuroimage.2024.120825
{"title":"Brain age prediction via cross-stratified ensemble learning","authors":"","doi":"10.1016/j.neuroimage.2024.120825","DOIUrl":null,"url":null,"abstract":"<div><p>As an important biomarker of neural aging, the brain age reflects the integrity and health of the human brain. Accurate prediction of brain age could help to understand the underlying mechanism of neural aging. In this study, a cross-stratified ensemble learning algorithm with staking strategy was proposed to obtain brain age and the derived predicted age difference (PAD) using T1-weighted magnetic resonance imaging (MRI) data. The approach was characterized as by implementing two modules: one was three base learners of 3D-DenseNet, 3D-ResNeXt, 3D-Inception-v4; another was 14 secondary learners of liner regressions. To evaluate performance, our method was compared with single base learners, regular ensemble learning algorithms, and state-of-the-art (SOTA) methods. The results demonstrated that our proposed model outperformed others models, with three metrics of mean absolute error (MAE), root mean-squared error (RMSE), and coefficient of determination (R<sup>2</sup>) of 2.9405 years, 3.9458 years, and 0.9597, respectively. Furthermore, there existed significant differences in PAD among the three groups of normal control (NC), mild cognitive impairment (MCI) and Alzheimer's disease (AD), with an increased trend across NC, MCI, and AD. It was concluded that the proposed algorithm could be effectively used in computing brain aging and PAD, and offering potential for early diagnosis and assessment of normal brain aging and AD.</p></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1053811924003227/pdfft?md5=a94156a1c7688c69217b3035f01b3fea&pid=1-s2.0-S1053811924003227-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811924003227","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

As an important biomarker of neural aging, the brain age reflects the integrity and health of the human brain. Accurate prediction of brain age could help to understand the underlying mechanism of neural aging. In this study, a cross-stratified ensemble learning algorithm with staking strategy was proposed to obtain brain age and the derived predicted age difference (PAD) using T1-weighted magnetic resonance imaging (MRI) data. The approach was characterized as by implementing two modules: one was three base learners of 3D-DenseNet, 3D-ResNeXt, 3D-Inception-v4; another was 14 secondary learners of liner regressions. To evaluate performance, our method was compared with single base learners, regular ensemble learning algorithms, and state-of-the-art (SOTA) methods. The results demonstrated that our proposed model outperformed others models, with three metrics of mean absolute error (MAE), root mean-squared error (RMSE), and coefficient of determination (R2) of 2.9405 years, 3.9458 years, and 0.9597, respectively. Furthermore, there existed significant differences in PAD among the three groups of normal control (NC), mild cognitive impairment (MCI) and Alzheimer's disease (AD), with an increased trend across NC, MCI, and AD. It was concluded that the proposed algorithm could be effectively used in computing brain aging and PAD, and offering potential for early diagnosis and assessment of normal brain aging and AD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过交叉分层集合学习预测大脑年龄
作为神经衰老的重要生物标志物,脑年龄反映了人脑的完整性和健康状况。准确预测脑年龄有助于了解神经衰老的内在机制。本研究提出了一种交叉分层的集合学习算法,该算法采用定标策略,利用 T1 加权磁共振成像(MRI)数据获得脑年龄和推导出的预测年龄差值(PAD)。该方法的特点是实现了两个模块:一个是 3D-DenseNet, 3D-ResNeXt, 3D-Inception-v4 的三个基础学习器;另一个是 14 个衬垫回归的二级学习器。为了评估性能,我们将我们的方法与单一基础学习器、常规集合学习算法和最先进的(SOTA)方法进行了比较。结果表明,我们提出的模型优于其他模型,平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R2)三项指标分别为 2.9405 年、3.9458 年和 0.9597 年。此外,PAD 在正常对照组(NC)、轻度认知障碍组(MCI)和阿尔茨海默病组(AD)三组之间存在显著差异,且在 NC、MCI 和 AD 之间呈上升趋势。结论是所提出的算法可有效地用于计算脑衰老和PAD,为早期诊断和评估正常脑衰老和AD提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Individual contralesional recruitment in the context of structural reserve in early motor reorganization after stroke Semi-analytic three-shell forward calculation for magnetoencephalography Relationships between brain structure-function coupling in normal aging and cognition: A cross-ethnicity population-based study Distinct neural pathway and its information flow for blind individual's Braille reading Source imaging method based on diagonal covariance bases and its applications to OPM-MEG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1